Learn More
Hippocampal region CA3 contains strong recurrent excitation mediated by synapses of the longitudinal association fibers. These recurrent excitatory connections may play a dominant role in determining the information processing characteristics of this region. However, they result in feedback dynamics that may cause both runaway excitatory activity and(More)
Learning-related cellular modifications were studied in the rat piriform cortex. Water-deprived rats were divided to three groups: 'trained' rats were trained in a four-arm maze to discriminate positive cues in pairs of odours, 'control' rats were 'pseudo-trained' by random water rewarding, and 'naive' rats were water-deprived only. In one experimental(More)
Learning-related cellular modifications were studied in the rat piriform cortex after operand conditioning. Rats were trained to discriminate positive cues in pairs of odors. In one experimental paradigm, rats were trained to memorize 35-50 pairs of odors ("extensive training"). In another paradigm, training was continued only until rats acquired the rule(More)
We studied the role of acetylcholine (ACh) in creating learning-related long-lasting modifications in the rat cortex. Rats were trained to discriminate positive and negative cues in pairs of odors, until they demonstrated rule learning and entered a mode of high capability for learning of additional odors. We have previously reported that pyramidal neurons(More)
Metaplasticity, the plasticity of synaptic plasticity, is thought to have a pivotal role in activity-dependent modulation of synaptic connectivity, which underlies learning and memory. Metaplasticity is usually attributed to modifications in glutamate receptor-mediated synaptic transmission. However, experimental evidence and theoretical considerations(More)
1. In transverse brain slice preparations of rat piriform cortex, we characterized the repetitive firing properties of layer II pyramidal cells in control conditions (n = 78) and during perfusion of the cholinergic agonist carbachol (n = 26), with the ultimate goal of developing realistic computational simulations of the cholinergic modulation of the(More)
The effect of activation of cholinergic receptors on long-term potentiation (LTP) in rat piriform cortex pyramidal cells was studied using extracellular and intracellular recordings in brain slice preparations. The functional role of this modulation was studied in a realistic network biophysical stimulation. Repetitive stimuli were applied in two paradigms:(More)
We studied the effect of olfactory learning on the dendritic spine density of pyramidal neurons in the rat piriform (olfactory) cortex. Rats were trained to distinguish between two pairs of odours in an olfactory discrimination task. Three days after training completion, rats were killed and layer II pyramidal neurons identified by Golgi impregnation were(More)
This review describes research that combines cellular physiology with behavioral neuroscience, to study the cellular mechanisms underlying learning and memory in the mammalian brain. Rats were trained with an olfactory conditioning paradigm, in which they had to memorize odors in order to be rewarded with drinking water. Such training results in rule(More)