Learn More
Metaplasticity, the plasticity of synaptic plasticity, is thought to have a pivotal role in activity-dependent modulation of synaptic connectivity, which underlies learning and memory. Metaplasticity is usually attributed to modifications in glutamate receptor-mediated synaptic transmission. However, experimental evidence and theoretical considerations(More)
Although small conductance (SK)-mediated calcium-dependent potassium currents are usually mostly thought to modulate neuronal adaptation by suppressing repetitive spike firing, recent evidence suggests that these channels also modulate synaptic transmission. SK2 channels were shown to be activated in dendritic spines following calcium entry via(More)
Olfactory-discrimination learning results with a series of intrinsic and excitatory synaptic modifications in piriform cortex pyramidal neurons. Here we show that such learning results with long-lasting enhancement of inhibitory synaptic transmission onto proximal dendrites of these pyramidal neurons. Such enhancement is mediated by a strong hyperpolarizing(More)
Olfaction is a principal sensory modality in rodents, and rats quickly learn to discriminate between odors and to associate odor with reward. Here we show that such olfactory discrimination (OD) learning consists of two phases with distinct cellular mechanisms: an initial NMDAR-sensitive phase in which the animals acquire a successful behavioral strategy(More)
We studied the effect of olfactory learning-induced modifications in piriform (olfactory) cortex pyramidal neurons on the propagation of postsynaptic potentials (PSPs). Rats were trained to distinguish between odors in pairs, in an olfactory discrimination task. Three days after training completion, PSPs were evoked in layer II pyramidal cells in piriform(More)
We have previously shown that rule learning of an olfactory discrimination task is accompanied by increased spine density along the apical dendrites of piriform cortex pyramidal neurons. The purpose of the present study was to examine whether such olfactory learning task, in which the hippocampus is actively involved, induces morphological modifications in(More)
Pyramidal neurons in the piriform cortex of olfactory discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the postburst after hyperpolarization which is generated by repetitive spike firing. The molecular machinery(More)
Long-lasting modulation of intrinsic neuronal excitability in cortical neurons underlies distinct stages of skill learning. However, whether individual differences in learning capabilities are dependent on the rate by which such learning-induced modifications occur has yet to be explored. Here we show that training rats in a simple olfactory-discrimination(More)
Long-term memory is supported not only by modulation of synaptic strength, but also by modifications in intrinsic neuronal properties. Learning-induced enhancement of neuronal excitability has been shown in the hippocampus and the piriform cortex, where it lasts for days and is involved in maintaining the learned skills. The basolateral amygdala (BLA) is(More)