Edgardo A. Ferrán

Learn More
A new method based on neural networks to cluster proteins into families is described. The network is trained with the Kohonen unsupervised learning algorithm, using matrix pattern representations of the protein sequences as inputs. The components (x, y) of these 20 x 20 matrix patterns are the normalized frequencies of all pairs xy of amino acids in each(More)
We have recently described a method based on artificial neural networks to cluster protein sequences into families. The network was trained with Kohonen's unsupervised learning algorithm using, as inputs, the matrix patterns derived from the dipeptide composition of the proteins. We present here a large-scale application of that method to classify the 1,758(More)
An artificial neural network was used to cluster proteins into families. The network, composed of 7 x 7 neurons, was trained with the Kohonen unsupervised learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of 447 proteins, belonging to 13 different families. As a result of the training, and without any a priori(More)
We have recently proposed a method, based on artificial neural networks (ANNs) to cluster protein sequences into families according to their degree of sequence similarity. The network was trained with an unsupervised learning algorithm, using, as inputs, matrix patterns derived from the bipeptide composition of the protein sequences. We describe here some(More)
We have recently described a method based on Artificial Neural Networks to cluster protein sequences into families. The network was trained with Kohonen's unsupervised-learning algorithm using, as inputs, matrix patterns derived from the bipeptide composition of the proteins. We show here the application of that method to classify 1758 protein sequences,(More)
  • 1