Eckhard Fischer

Learn More
Borrelia burgdorferi spends a significant proportion of its life cycle within an ixodid tick, which has a cuticle containing chitin, a polymer of N-acetylglucosamine (GlcNAc). The B. burgdorferi celA, celB, and celC genes encode products homologous to transporters for cellobiose and chitobiose (the dimer subunit of chitin) in other bacteria, which could be(More)
The exb locus in Escherichia coli consists of two genes, termed exbB and exbD. Exb functions are related to TonB function in that most TonB-dependent processes are enhanced by Exb. Like tonB mutants, exb mutants were resistant to colicin M and albomycin but, in contrast to tonB mutants, showed only reduced sensitivity to colicins B and D. Overexpressed tonB(More)
We have begun to apply techniques for the preparation and anaylsis of large DNA segments from sugar beet (Beta vulgaris) addition lines carrying a mitotically stable chromosome fragment from B. procumbens that confers monogenic resistance to the nematode Heterodera schachtii, with a view towards isolating the resistance gene. DNA probes specific for this(More)
Escherichia coli elongation factor (EF-Tu) binds aminoacyl-tRNAs (aa-tRNA) not only in the presence of GTP but also in the presence of GDP. Complex formation leads to a protection of the aa-tRNA against nonenzymatic deacylation and digestion by pancreatic ribonuclease, as well as to a protection of EF-Tu against proteolysis by trypsin. The equilibrium(More)
Pulvomycin and the synonymous antibiotics labilomycin and 1063-Z are shown to inhibit prokaryotic protein synthesis by acting on elongation factor Tu (EF-Tu): in the presence of the antibiotic, the affinity of EF-Tu for guanine nucleotides is altered, the EF-Tu.GDP/GTP exchange is catalyzed, and the formation of the EF-Tu.GTP complex is stimulated.(More)
After uptake of microbial ferrisiderophores, iron is assumed to be released by reduction. Two ferrisiderophore-reductase activities were identified in Escherichia coli K-12. They differed in cellular location, susceptibility to amytal, and competition between oxygen and ferrichrome-iron(III) reduction. The ferrisiderophore reductase associated with the(More)
A rapid and simple method for purification of the FhuA receptor protein from cell envelopes of a FhuA-overproducing strain of Escherichia coli K-12 was developed. The overproduction of FhuA was programmed by the thermoamplifiable plasmid pHK232, which carried the fhuACD genes of pLC19-19 of the Clarke and Carbon collection. At low temperature (27 degrees(More)
The regimen conferring competence for uptake of transforming DNA is shown to render Escherichia coli osmolabile. Three different K-12 strains were exposed to the standard procedure of competence induction, i.e. incubation in the presence of 0.1 M Ca2+ or Mg2+ for 50 min at 0°C, interrupted by a heat shock for 5 min at 37°C. Upon osmotic challenge of(More)
Measurements of the redox potential values in buffered salt solutions containing body wall homogenate, body wall homogenate with isolated chloragosomes and in both solutions enriched with NAD have shown that chloragosomes are specific electron acceptors which prevent the rapid decrease of the redox potential under anaerobic conditions. The substances(More)
The fhu operon of Escherichia coli K-12 comprises four genes, termed fhuA,C,D,B, which are involved in the uptake of iron-hydroxamate compounds. The fhuA gene encodes the outer membrane receptor protein. Cells that contained three copies of the fhuACD fragment on the thermoamplifiable plasmid pHK232 accumulated at 37° C large amounts of the proFhuA protein.(More)