#### Filter Results:

#### Publication Year

1999

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

#### Brain Region

#### Cell Type

#### Method

#### Organism

Learn More

Systems of nonlocally coupled oscillators can exhibit complex spatiotemporal patterns, called chimera states, which consist of coexisting domains of spatially coherent (synchronized) and incoherent dynamics. We report on a novel form of these states, found in a widely used model of a limit-cycle oscillator if one goes beyond the limit of weak coupling… (More)

We investigate feedback control of the cooperative dynamics of two coupled neural oscillators that is induced merely by external noise. The interacting neurons are modeled as FitzHugh-Nagumo systems with parameter values at which no autonomous oscillations occur, and each unit is forced by its own source of random fluctuations. Application of delayed… (More)

We discuss the breakdown of spatial coherence in networks of coupled oscillators with nonlocal interaction. By systematically analyzing the dependence of the spatiotemporal dynamics on the range and strength of coupling, we uncover a dynamical bifurcation scenario for the coherence-incoherence transition which starts with the appearance of narrow layers of… (More)

We study synchronization in delay-coupled oscillator networks using a master stability function approach. Within a generic model of Stuart-Landau oscillators (normal form of supercritical or subcritical Hopf bifurcation), we derive analytical stability conditions and demonstrate that by tuning the coupling phase one can easily control the stability of… (More)

Time-delayed feedback is exploited for controlling noise-induced motion in coherence resonance oscillators. Namely, under the proper choice of time delay, one can either increase or decrease the regularity of motion. It is shown that in an excitable system, delayed feedback can stabilize the frequency of oscillations against variation of noise strength.… (More)

- E Schöll, A G Balanov, N B Janson, A Neiman
- 2004

We study the effect of a time-delayed feedback upon a Van der Pol oscillator under the influence of white noise in the regime below the Hopf bifurcation where the deterministic system has a stable fixed point. We show that both the coherence and the frequency of the noise-induced oscillations can be controlled by varying the delay time and the strength of… (More)

The influence of time delay in systems of two coupled excitable neurons is studied in the framework of the FitzHugh-Nagumo model. A time delay can occur in the coupling between neurons or in a self-feedback loop. The stochastic synchronization of instantaneously coupled neurons under the influence of white noise can be deliberately controlled by local… (More)

1 can support chimera states in which identical oscillators evolve into distinct groups that exhibit coexisting synchronous and incoherent behaviours despite homogeneous coupling 2–6. Similar nonlocal coupling topologies implemented in networks of chaotic iterated maps also yield dynamical states exhibiting coexisting spatial domains of coherence and… (More)

We study the effect of time delayed feedback control in the form proposed by Pyragas on deterministic chaos in the Rössler system. We reveal the general bifurcation diagram in the parameter plane of time delay tau and feedback strength K which allows one to explain the phenomena that have been discovered in some previous works. We show that the bifurcation… (More)

We experimentally demonstrate group synchrony in a network of four nonlinear optoelectronic oscillators with time-delayed coupling. We divide the nodes into two groups of two each, by giving each group different parameters and by enabling only intergroup coupling. When coupled in this fashion, the two groups display different dynamics, with no isochronal… (More)