Ebrahim Shirani

Learn More
To study the effects of increase in the degree of stenosis severity and subsequent complexity of hemodynamic patterns on hemodynamic parameters, experimental investigations and numerical simulations were performed. The correlations between the large negative Stress Phase Angle (SPA), the low mean Wall Shear Stress (WSS) and high Oscillatory Shear Index(More)
Symmetrical 30-60% stenosis in a common carotid artery under unsteady flow condition for Newtonian and six non-Newtonian viscosity models are investigated numerically. Results show power-law model produces higher deviations, in terms of velocity and wall shear stress in comparison with other models while generalized power-law and modified-Casson models are(More)
Symmetrical 30-60% stenosis in carotid artery with a semi-permeable wall under steady/unsteady flows for Newtonian/non-Newtonian fluids is investigated numerically. The results show that the unsteadiness of blood flow, blood pressure rise and LDL component size increase the luminal concentration, LC, of the surface. The maximum LC occurring immediately(More)
Diverse tree structures such as blood vessels, branches of a tree and river basins exist in nature. The constructal law states that the evolution of flow structures in nature has a tendency to facilitate flow. This study suggests a theoretical basis for evaluation of flow facilitation within vascular structure from the perspective of evolution. A novel(More)
In this paper, Lattice Boltzmann Method (LBM) is used to study laminar flow with mixed convection heat transfer inside a two-dimensional inclined lid-driven rectangular cavity with aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower temperature than the top lid, and its vertical walls are assumed insulated. Top lid motion results in fluid(More)
In this paper, Lattice Boltzmann Method (LBM) is used to study laminar flow with mixed convection heat transfer inside a two-dimensional inclined lid-driven rectangular cavity with aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower temperature than the top lid, and its vertical walls are assumed insulated. Top lid motion results in fluid(More)
Frostbite is considered the severest form of cold injury and can lead to necrosis and loss of peripheral appendages. Therefore, prediction of endurance time of limb's tissue in cold condition is not only necessary but also crucial to estimate cold injury intensity and to choose appropriate clothing. According to the previous work which applied a 3-D thermal(More)
The existing computational models of frostbite injury are limited to one and two dimensional schemes. In this study, a coupled thermo-fluid model is applied to simulate a finger exposed to cold weather. The spatial variability of finger-tip temperature is compared to experimental ones to validate the model. A semi-realistic 3D model for tissue and blood(More)
Specifying exact geometry of vessel network and its effect on temperature distribution in living tissues is one of the most complicated problems of the bioheat field. In this paper, the effects of blood vessels on temperature distribution in a skin tissue subjected to various thermal therapy conditions are investigated. Present model consists of(More)
In the present study, theoretical formulations for calculation of optimal bifurcation angle and relationship between the diameters of mother and daughter vessels using the power law model for non-Newtonian fluids are developed. The method is based on the distribution of wall shear stress in the mother and daughter vessels. Also, the effect of distribution(More)