Ebienus van Agen

Learn More
Two general mechanisms are implicated in chemical carcinogenesis. The first involves direct damage to DNA, referred to as genotoxic (GTX), to which the cell responds by repair of the damages, arrest of the cell cycle or induction of apoptosis. The second is non-DNA damaging, non-genotoxic (NGTX), in which a wide variety of cellular processes may be(More)
Chemical carcinogenesis induced by lifestyle factors like cigarette smoking is a major research area in molecular epidemiology. Gene expression analysis of large numbers of genes simultaneously using microarrays holds the opportunity to study the effects of such an exposure at the genome level yielding more mechanism-based information. Therefore, the aim of(More)
Prediction of the toxic properties of chemicals based on modulation of gene expression profiles in exposed cells or animals is one of the major applications of toxicogenomics. Previously, we demonstrated that by Pearson correlation analysis of gene expression profiles from treated HepG2 cells it is possible to correctly discriminate and predict genotoxic(More)
We investigated the effects of smoking-induced oxidative stress in healthy volunteers (21 smokers versus 24 non-smokers) by quantifying various markers of oxidative DNA damage and repair, and antioxidative defense mechanisms. Lymphocytic 7-hydroxy-8-oxo-2'-deoxyguanosine (8-oxo-dG) levels measured by high performance liquid chromatography with(More)
Two biomarkers of exposure to cigarette smoke, 4-aminobiphenyl-hemoglobin (Hb) adducts and aromatic DNA adducts in lymphocytes, were determined from a population of 55 smokers and 4 nonsmokers. The levels of these adducts were related to daily cigarette consumption and also to (calculated) tar and nicotine intake. The Hb adduct levels seemed to correspond(More)
Reactive oxygen species (ROS), possibly produced during the metabolic conversion of benzo(a)pyrene (B[a]P), could be involved in B[a]P-induced genotoxicity and, eventually, carcinogenicity. Therefore, ROS formation by rat lung and liver microsomes was studied in vitro by electron spin resonance (ESR/EPR) spectrometry. B[a]P-mediated generation of ROS was(More)
The evidence from epidemiological and experimental studies that vegetables reduce the risk of colorectal cancer is convincing. However, the involved genes and genetic pathways are not clear. The aim of this study was to identify genes that are modulated in vivo in colorectal mucosa by vegetables, and to investigate whether colon adenoma patients respond(More)
There is abundant epidemiological evidence that vegetable consumption decreases colorectal cancer (CRC) risk. However, the molecular targets in the genome are mostly unknown. The present study investigated the effects of vegetable consumption on gene expression in the colon mucosa of female C57Bl/6 mice using cDNA microarray technology. Mice were fed one of(More)
Worldwide, lung cancer is the most prevalent and lethal malignant disease. In addition to avoidance of the most predominant risk factor, i.e., tobacco use, consumption of high amounts of vegetables and fruits could be an effective means of preventing lung cancer. However, the molecular mechanisms underlying lung cancer risk reduction by vegetables are not(More)
  • 1