Learn More
The phytochrome family of red/far-red (R/FR)-responsive photoreceptors plays a key role throughout the life cycle of plants . Arabidopsis has five phytochromes, phyA-phyE, among which phyA and phyB play the most predominant functions . Light-regulated nuclear accumulation of the phytochromes is an important regulatory step of this pathway, but to this date(More)
In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor(More)
Plant photoreceptor phytochromes are phosphoproteins, but the question as to the functional role of phytochrome phosphorylation has remained to be elucidated. We investigated the functional role of phytochrome phosphorylation in plant light signaling using a Pfr-specific phosphorylation site mutant, Ser598Ala of oat (Avena sativa) phytochrome A (phyA). The(More)
Plants use sophisticated strategies to balance responses to oxidative stress. Programmed cell death, including the hypersensitive response (HR) associated with successful pathogen recognition, is one cellular response regulated by reactive oxygen in various cellular contexts. The Arabidopsis basic leucine zipper (bZIP) transcription factor AtbZIP10 shuttles(More)
Environmental light information such as quality, intensity, and duration in red (approximately 660 nm) and far-red (approximately 730 nm) wavelengths is perceived by phytochrome photoreceptors in plants, critically influencing almost all developmental strategies from germination to flowering. Phytochromes interconvert between red light-absorbing Pr and(More)
To identify specific mutants for components of phytochrome A (phyA) signaling in Arabidopsis, we established a light program consisting of multiple treatments with alternating red and far-red light. In wild-type seedlings, irradiation with multiple red light pulses can reduce the amount of phyA, which in turn decreases the high-irradiance responses (HIRs)(More)
BACKGROUND At the core of the eukaryotic circadian network, clock genes/proteins form multiple transcriptional/translational negative-feedback loops and generate a basic approximately 24 hr oscillation, which provides daily regulation for a wide range of processes. This temporal organization enhances the fitness of the organism only if it corresponds to the(More)
The phytochrome (phy) family of photoreceptors is of crucial importance throughout the life cycle of higher plants. Light-induced nuclear import is required for most phytochrome responses. Nuclear accumulation of phyA is dependent on two related proteins called FHY1 (Far-red elongated HYpocotyl 1) and FHL (FHY1 Like), with FHY1 playing the predominant(More)
Phytochrome A (phyA) is the only photoreceptor in plants, initiating responses in far-red light and, as such, essential for survival in canopy shade. Although the absorption and the ratio of active versus total phyA are maximal in red light, far-red light is the most efficient trigger of phyA-dependent responses. Using a joint experimental-theoretical(More)
PHYTOCHROME-INTERACTING FACTOR5 (PIF5), a basic helix-loop-helix transcription factor, interacts specifically with the photoactivated form of phytochrome B (phyB). Here, we report that dark-grown Arabidopsis thaliana seedlings overexpressing PIF5 (PIF5-OX) exhibit exaggerated apical hooks and short hypocotyls, reminiscent of the triple response induced by(More)