Eberhard Schäfer

Learn More
Light and gibberellins (GAs) mediate many essential and partially overlapping plant developmental processes. DELLA proteins are GA-signalling repressors that block GA-induced development. GA induces degradation of DELLA proteins via the ubiquitin/proteasome pathway, but light promotes accumulation of DELLA proteins by reducing GA levels. It was proposed(More)
The light environment is a key factor that governs a multitude of developmental processes during the entire life cycle of plants. An important and increasing part of the incident sunlight encompasses a segment of the UV-B region (280-320 nm) that is not entirely absorbed by the ozone layer in the stratosphere of the earth. This portion of the solar(More)
Light, in a quality- and quantity-dependent fashion, induces nuclear import of the plant photoreceptors phytochrome, promotes interaction of phytochrome A (phyA) and phyB with transcription factors including phytochrome interacting factor 3 (PIF3), and is thought to trigger a transcriptional cascade to regulate the expression of approximately 2500 genes in(More)
To optimize their growth and survival, plants perceive and respond to ultraviolet-B (UV-B) radiation. However, neither the molecular identity of the UV-B photoreceptor nor the photoperception mechanism is known. Here we show that dimers of the UVR8 protein perceive UV-B, probably by a tryptophan-based mechanism. Absorption of UV-B induces instant(More)
Following light-induced nuclear translocation, specific members of the phytochrome (phy) photoreceptor family (phyA to phyE) interact with bHLH transcription factors, such as PIF3, and induce changes in target-gene expression. The biochemical mechanism comprising signal transfer from phy to PIF3 has remained undefined but results in rapid degradation of(More)
CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) is a negative regulator of photomorphogenesis in Arabidopsis thaliana. COP1 functions as an E3 ubiquitin ligase, targeting select proteins for proteasomal degradation in plants as well as in mammals. Among its substrates is the basic domain/leucine zipper (bZIP) transcription factor ELONGATED HYPOCOTYL5 (HY5), one of(More)
The phytochrome (phy) family of plant photoreceptors controls various aspects of photomorphogenesis. Overexpression of rice phyA–green fluorescent protein (GFP) and tobacco phyB–GFP fusion proteins in tobacco results in functional photoreceptors. phyA–GFP and phyB–GFP are localized in the cytosol of dark-adapted plants. In our experiments, red light(More)
To perceive red and far-red light, plants have evolved specific photoreceptors called phytochromes. Even though the spectral properties of all phytochromes are very similar, they show a distinct mode of action. Here we describe EID1, a negatively acting component of the signaling cascade that shifts the responsiveness of the phytochrome A (phyA) signaling(More)
PHYTOCHROME-INTERACTING FACTOR5 (PIF5), a basic helix-loop-helix transcription factor, interacts specifically with the photoactivated form of phytochrome B (phyB). Here, we report that dark-grown Arabidopsis thaliana seedlings overexpressing PIF5 (PIF5-OX) exhibit exaggerated apical hooks and short hypocotyls, reminiscent of the triple response induced by(More)
In this review the kinetic properties of both phytochrome A and B measured by in vivo spectroscopy in Arabidopsis are described. Inactivation of phyA is mediated by destruction and that of phyB by fast dark reversion. Recent observations, describing a complex interaction network of various phytochromes and cryptochromes, are also discussed. The review(More)