Eberhard D Pracht

Learn More
Magnetic susceptibility gradients caused by tissue/air interfaces lead to very short T(2)* times in the human lung. These susceptibility gradients are dependent on the magnetic susceptibility of the respiratory gas and therefore should influence T(2)* relaxation. In this work, a technique for quantitative T(2)* mapping of the human lung during one breath(More)
Respiratory motion and pulsatile blood flow can generate artifacts in morphological and functional lung imaging. Total acquisition time, and thus the achievable signal to noise ratio, is limited when performing breath-hold and/or electrocardiogram-triggered imaging. To overcome these limitations, imaging during free respiration can be performed using(More)
Conductive implants are in most cases a strict contraindication for MRI examinations, as RF pulses applied during the MRI measurement can lead to severe heating of the surrounding tissue. Understanding and mapping of these heating effects is therefore crucial for determining the circumstances under which patient examinations are safe. The use of fluoroptic(More)
This work introduces an MR-compatible active breathing control device (MR-ABC) that can be applied to lung imaging. An MR-ABC consists of a pneumotachograph for respiratory monitoring and an airway-sealing unit. Using an MR-ABC, the subjects were forced to suspend breathing for short time intervals, which were used in turn for data acquisition. While the(More)
The major drawback to quantitative perfusion imaging using arterial spin labeling (ASL) techniques is the need to acquire two images (tag and control), which must be subtracted in order to obtain a perfusion-weighted image. This can potentially result in misregistration artifacts, especially in lung imaging, due to varying lung inflation levels in different(More)
PURPOSE The mapping of MR relaxation times and proton density has been the subject of research in medical imaging for many years, as it offers the possibility for longitudinal investigation of disease and the correlation with related biochemical processes. The purpose of this study is to provide a fast mapping protocol, which simultaneously acquires MR(More)
OBJECT Implementation of an accelerated Magnetization Prepared RApid Gradient Echo (MP-RAGE) sequence for T1 weighted neuroimaging; exploiting modern MRI technologies to minimize scan time while preserving the image quality. MATERIALS AND METHODS A custom MP-RAGE sequence was implemented on a state-of-the-art 3T MR scanner equipped with a 32-channel(More)
  • 1