Learn More
The mouse is an important model of human genetic disease. Describing phenotypes of mutant mice in a standard, structured manner that will facilitate data mining is a major challenge for bioinformatics. Here we describe a novel, compositional approach to this problem which combines core ontologies from a variety of sources. This produces a framework with(More)
Ontologies are becoming increasingly important for the efficient storage, retrieval and mining of biological data. The description of phenotypes using ontologies is a particularly complex problem. We outline a schema that can be used to describe phenotypes by combining orthologous axiomatic ontologies. We also describe tools for storing, browsing and(More)
UNLABELLED Standardized phenotyping protocols are essential for the characterization of phenotypes so that results are comparable between different laboratories and phenotypic data can be related to ontological descriptions in an automated manner. We describe a web-based resource for the visualization, searching and downloading of standard operating(More)
The structured description of mutant phenotypes presents a major conceptual and practical problem. A general model for generating mouse phenotype ontologies that involves combing a variety of different ontologies to better link and describe phenotypes is presented. This model is based on the Phenotype and Trait Ontology schema proposal and incorporates(More)
MOTIVATION A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations(More)
  • 1