E. W. Stawiski

Learn More
Many of the targets of structural genomics will be proteins with little or no structural similarity to those currently in the database. Therefore, novel function prediction methods that do not rely on sequence or fold similarity to other known proteins are needed. We present an automated approach to predict nucleic-acid-binding (NA-binding) proteins,(More)
We have noted consistent structural similarities among unrelated proteases. In comparison with other proteins of similar size, proteases have smaller than average surface areas, smaller radii of gyration, and higher C(alpha) densities. These findings imply that proteases are, as a group, more tightly packed than other proteins. There are also notable(More)
The Structural Genomics Initiative promises to deliver between 10,000 and 20,000 new protein structures within the next ten years. One challenge will be to predict the functions of these proteins from their structures. Since the newly solved structures will be enriched in proteins with little sequence identity to those whose structures are known, new(More)
  • 1