Learn More
The neural pathways for touch-induced movement in Caenorhabditis elegans contain six touch receptors, five pairs of interneurons, and 69 motor neurons. The synaptic relationships among these cells have been deduced from reconstructions from serial section electron micrographs, and the roles of the cells were assessed by examining the behavior of animals(More)
The nervous system of Caenorhabditis elegans is arranged as a series of fibre bundles which run along internal hypodermal ridges. Most of the sensory integration takes place in a ring of nerve fibres which is wrapped round the pharynx in the head. The body muscles in the head are innervated by motor neurones in this nerve ring while those in the lower part(More)
The nervous system of C. elegans is arranged as a collection of process bundles. Processes within bundles are generally unbranched and occupy defined positions relative to their neighbors. Small groups of processes are often closely associated together and run adjacent to one another for relatively long distances. We have defined the set of neurons that(More)
Identification of the genes orchestrating neurogenesis would greatly enhance our understanding of this process. Genes have been identified that specify neuron type (for example cut and numb in Drosophila and mec-3 in Caenorhabditis elegans) and process guidance (for example, unc-5, unc-6 and unc-40 in C. elegans and the fas-1 gene of Drosophila). We sought(More)
The nervous system of the nematode worm Ascaris contains about 250 nerve cells; of these, the motoneurons consist of five segmental sets, each containing 11 cells. Morphologically, the motoneurons can be divided into seven different types. Their geometry is simple: some are unbranched, others have one branch point, and the most complex have two. There is no(More)
  • 1