Learn More
Upon reaching the target region, neuronal growth cones transiently search through potential targets and form synaptic connections with only a subset of these. The capricious (caps) gene may regulate these processes in Drosophila. caps encodes a transmembrane protein with leucine-rich repeats (LRRs). During the formation of neuromuscular synapses, caps is(More)
The fibroblast growth factor (FGF)/receptor system is thought to mediate various developmental events in vertebrates. We examined molecular structures and expression of DFR1 and DFR2, two Drosophila genes closely related to vertebrate FGF-receptor genes. DFR1 and DFR2 proteins contain two and five immunoglobulin-like domains, respectively, in the(More)
DFR1 encodes a mesoderm-specific fibroblast growth factor receptor in Drosophila. Here, we identified and characterized a protein-null mutant of DFR1 and examined DFR1 expression in embryos using anti-DFR1 antibody. Mutant phenotypes were completely rescued by a genomic fragment from the DFR1 locus. After invagination, mesodermal cells expressing DFR1(More)
Drosophila Capricious (CAPS) is a transmembrane protein with leucine-rich repeat (LRR) motifs, expressed on small subsets of neurons and muscles, including muscle 12 and the motoneurons that innervate it (muscle 12 MNs). Panmuscle ectopic expression of CAPS alters the target specificity of muscle 12 MNs, indicating that CAPS can function in muscles as a(More)
We isolated and characterized the eagle gene, encoding a member of the steroid receptor superfamily in Drosophila. In the central nervous system eagle RNA was expressed in a limited number of cells. During stages 10 and 11, eagle RNA expression was observed in four neuroblasts, NB2-4, NB3-3, NB6-4 and NB7-3. Except for NB6-4, eagle RNA expression reached a(More)
Ciliated neurons play an important role in sensory perception in many animals. Modified cilia at dendrite endings serve as sites of sensory signal capture and transduction. We describe Drosophila mutations that affect the transcription factor RFX and genetic rescue experiments that demonstrate its central role in sensory cilium differentiation. Rfx mutant(More)
A Drosophila gene encoding a gamma-type isozyme of phosphoinositide-specific phospholipase C (PLC) was isolated and characterized. The gene, termed plc-gamma d, was mapped at position 14B-C of the X chromosome. The encoded protein, termed PLC-gamma D, contains X and Y regions, common to all known PLC isozymes. The two regions are split by a Z region that(More)
We used the polymerase chain reaction to identify 7 novel tyrosine-kinase genes (dtk1 to -7) in Drosophila melanogaster, dtk4 coded for a part of the kinase catalytic domain nearly identical in sequence to that of the human receptor for insulin-like growth factor 1, whereas sequences encoded by dtk1 and dtk2 were highly homologous to that of the chicken(More)
Cyclic nucleotide-gated (CNG) channels link intracellular cyclic nucleotides to changes in membrane ionic conductance in a variety of physiological contexts. In the retina, in addition to their central role in phototransduction, CNG channels may be involved in nitric oxide signaling in bipolar neurons or in the hyperpolarizing synaptic response to glutamate(More)
Autism spectrum disorder is a neurodevelopmental disorder present in 1% of the population, characterized by impairments in reciprocal social interaction, communication deficits and restricted patterns of behavior. Approximately 10% of the autism spectrum disorder population is thought to have large chromosomal rearrangements. Copy-number variations (CNV)(More)