Learn More
The H(2)-oxidizing lithoautotrophic bacterium Ralstonia eutropha H16 is a metabolically versatile organism capable of subsisting, in the absence of organic growth substrates, on H(2) and CO(2) as its sole sources of energy and carbon. R. eutropha H16 first attracted biotechnological interest nearly 50 years ago with the realization that the organism's(More)
Nucleotide sequence analysis revealed a 1,791-bp open reading frame in the hox gene cluster of the gram-negative chemolithotroph Alcaligenes eutrophus H16. In order to investigate the biological role of this open reading frame, we generated an in-frame deletion allele via a gene replacement strategy. The resulting mutant grew significantly more slowly than(More)
The aerobic bacteria capable of obtaining energy from the oxidation of H2 form a heterogenous group that includes both facultative and obligate chemolithotrophs and representatives of both gram-negative and gram-positive genera. H2-oxidizing aerobes inhabit such diverse biotypes as soil, oceans, and hot springs. The oxidation of H2 in these bacteria is(More)
The self-transmissible megaplasmid pHG1 carries essential genetic information for the facultatively lithoautotrophic and facultatively anaerobic lifestyles of its host, the Gram-negative soil bacterium Ralstonia eutropha H16. We have determined the complete nucleotide sequence of pHG1. This megaplasmid is 452,156 bp in size and carries 429 potential genes.(More)
We have used pulsed field gel electrophoresis and megabase DNA techniques to investigate the basic genomic organization of Ralstonia eutropha H16, and to construct a physical map of its indigenous megaplasmid pHG1. This Gram-negative, soil-dwelling bacterium is a facultative chemolithoautotroph and a denitrifier. In the absence of organic substrates it can(More)
To learn more about the ways in which genes silenced by insertion mutations can be reactivated, we have undertaken a systematic investigation of Gal+ revertants of the polar mutant galOP-306::IS1 in Escherichia coli K12. The selective conditions used excluded reversion to wild type by precise excision of IS1. In this system (which resided on a multi-copy(More)
Alcaligenes eutrophus H16 produces two [NiFe] hydrogenases which catalyze the oxidation of hydrogen and enable the organism to utilize H2 as the sole energy source. The genes (hoxK and hoxG) for the heterodimeric, membrane-bound hydrogenase (MBH) are located adjacent to a series of eight accessory genes (hoxZ, hoxM, hoxL, hoxO, hoxQ, hoxR, hoxT, and hoxV).(More)
IS150 contains two tandem, out-of-phase, overlapping genes, ins150A and ins150B, which are controlled by the same promoter. These genes encode proteins of 19 and 31 kD, respectively. A third protein of 49 kD is a transframe gene product consisting of domains encoded by both genes. Specific -1 ribosomal frameshifting is responsible for the synthesis of the(More)
Recently we identified the new insertion (IS) sequence IS150 in various strains of Escherichia coli K-12. We have screened other strains of E. coli and Salmonella typhimurium for the presence of homologous sequences. The strains of E. coli K-12 and W tested contain one or more copies of homology to IS150. We have also determined the complete nucleotide(More)
Ralstonia eutropha H16 is an H(2)-oxidizing, facultative chemolithoautotroph. Using 2-DE in conjunction with peptide mass spectrometry we have cataloged the soluble proteins of this bacterium during growth on different substrates: (i) H(2) and CO(2), (ii) succinate and (iii) glycerol. The first and second conditions represent purely lithoautotrophic and(More)