E. S. Moskalenko

Learn More
Individual quantum dots have been studied by means of microphotoluminescence with dual-laser excitation. The additional infrared laser influences the dot charge configuration and increases the dot luminescence intensity. This is explained in terms of separate generation of excess electrons and holes into the dot from the two lasers. With increasing dot(More)
We report on magneto-photoluminescence studies of InAs/GaAs quantum dots (QDs) of considerably different densities, from dense ensembles down to individual dots. It is found that a magnetic field applied in Faraday geometry decreases the photoluminescence (PL) intensity of QD ensembles, which is not accompanied by the corresponding increase of PL signal of(More)
InAs/GaAs quantum dots have been subjected to a lateral external electric field in low-temperature microphotoluminescence measurements. It is demonstrated that the dot PL signal could be increased several times depending on the magnitude of the external field and the strength of the internal (built-in) electric field, which could be altered by an additional(More)
A high degree (approximately 55%) of circular polarization has been observed for the neutral exciton in InAs/GaAs quantum dots (QDs). The possibility to record non-zero polarization of the neutral exciton is explained in terms of different capture times of the light electron compared with the heavier holes into the QDs from the wetting layer. This(More)
  • 1