Learn More
The cytokine interleukin-10 (IL-10) has shown promise in clinical trials for treatment of inflammatory bowel disease (IBD). Using two mouse models, we show that the therapeutic dose of IL-10 can be reduced by localized delivery of a bacterium genetically engineered to secrete the cytokine. Intragastric administration of IL-10-secreting Lactococcus lactis(More)
Secretion of functional recombinant murine interleukin-2 (mIL2) by Lactococcus lactis was achieved by fusion of the sequence encoding mature mIL2 to the secretion signal leader of the lactococcal usp45 gene placed under transcriptional control of the phage T7 promoter-T7 RNA polymerase expression system. The recombinant mature mIL2 was one of only a few(More)
Genetically modified Lactococcus lactis secreting interleukin 10 provides a therapeutic approach for inflammatory bowel disease. However, the release of such genetically modified organisms through clinical use raises safety concerns. In an effort to address this problem, we replaced the thymidylate synthase gene thyA of L. lactis with a synthetic human IL10(More)
Lactococcus lactis is a nonpathogenic and noncolonizing bacterium which is being developed as a vaccine delivery vehicle for immunization by mucosal routes. To determine whether lactococci can also deliver cytokines to the immune system, we have constructed novel constitutive expression strains of L. lactis which accumulate a test antigen, tetanus toxin(More)
BACKGROUND & AIMS The use of living, genetically modified bacteria is an effective approach for topical delivery of immunomodulatory proteins. This strategy circumvents systemic side effects and allows long-term treatment of chronic diseases. However, treatment of patients with a living, genetically modified bacterium raises questions about the safety for(More)
BACKGROUND & AIMS Effective therapeutics for treating acute colitis, caused by disruption of the intestinal epithelial barrier, are scarce. Trefoil factors (TFF) are cytoprotective and promote epithelial wound healing and reconstitution of the gastrointestinal tract, which makes them good candidate therapeutics for acute colitis. However, orally(More)
In this study, we showed that the cell wall anchor of protein A from Staphylococcus aureus is functional in the food-grade organism Lactococcus lactis. A fusion protein composed of the lactococcal Usp45 secretion signal peptide, streptavidin monomer, and the S. aureus protein A anchor became covalently attached to the peptidoglycan when expressed in L.(More)
OBJECTIVE The advent of tumor necrosis factor (TNF)-blocking drugs has provided rheumatologists with an effective, but highly expensive, treatment for the management of established rheumatoid arthritis (RA). Our aim was to explore preclinically the application of camelid anti-TNF VHH proteins, which are single-domain antigen binding (VHH) proteins(More)