E. R. Barton-Davis

Learn More
Insulin-like growth factor I (IGF-I) is critical in promoting growth of skeletal muscle. When IGF-I is introduced into mouse hindlimb muscles by viral-mediated gene transfer, local overexpression of IGF-I produces significant increases in muscle mass and strength compared with untreated controls (Barton-Davis et al. 1998). We have proposed that this(More)
During the aging process, mammals lose up to a third of their skeletal muscle mass and strength. Although the mechanisms underlying this loss are not entirely understood, we attempted to moderate the loss by increasing the regenerative capacity of muscle. This involved the injection of a recombinant adeno-associated virus directing overexpression of(More)
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene, leading to the absence of the dystrophin protein in striated muscle. A significant number of these mutations are premature stop codons. On the basis of the observation that aminoglycoside treatment can suppress stop codons in cultured cells, we tested the effect of gentamicin(More)
In humans, a subset of cases of Limb-girdle muscular dystrophy (LGMD) arise from mutations in the genes encoding one of the sarcoglycan (alpha, beta, gamma, or delta) subunits of the dystrophin-glycoprotein complex. While adeno-associated virus (AAV) is a potential gene therapy vector for these dystrophies, it is unclear if AAV can be used if a diseased(More)
We demonstrate that direct electrical stimulation of isolated fast-twitch muscle in an organ culture system can induce expression of the slow myosin heavy chain (beta-MHC) gene, indicative of a phenotype transformation. Pairs of extensor digitorum longus (EDL) muscles were isolated from adult mice, incubated at resting length in separate chambers, and(More)
121 used as stubstituents on Ci and C2; namely H, CH 3 , C 2 H 5 , and CeHs. They are differentiated to have approximately 1, 2, 3, and 5 A in their diameters as spherical models. For simplified discussion, we consider that 2 has bulkier substituents on Ci than on C2. Thus the C2 site will be more reactive than the Ci site for dimerization. In this occasion(More)
  • 1