E. P. Yukalova

Learn More
A class of models is introduced describing the evolution of population species whose carrying capacities are functionals of these populations. The functional dependence of the carrying capacities reflects the fact that the correlations between populations can be realized not merely through direct interactions, as in the usual predator-prey Lotka-Volterra(More)
We introduce a general mathematical model of symbiosis between different entities by taking into account the influence of each species on the carrying capacities of the others. The modeled entities can pertain to biological and ecological societies or to social, economic and financial societies. Our model includes three basic types: sym-biosis with direct(More)
We present a novel system of equations to describe the evolution of self-organized structured societies (biological or human) composed of several trait groups. The suggested approach is based on the combination of ideas employed in the theory of biological populations, system theory, and utility theory. The evolution equations are defined as utility rate(More)
We consider a class of evolution equations describing population dynamics in the presence of a carrying capacity depending on the population with delay. In an earlier work, we presented an exhaustive classification of the logistic equation where the carrying capacity is linearly dependent on the population with a time delay, which we refer to as the "(More)
We suggest a novel approach to treating symbiotic relations between biological species or social entities. The main idea is the characterisation of symbiotic relations of coexisting species through their mutual influence on their respective carrying capacities, taking into account that this influence can be quite strong and requires a nonlinear functional(More)
  • 1