E. Mark Haacke

Learn More
Susceptibility differences between tissues can be utilized as a new type of contrast in MRI that is different from spin density, T1-, or T2-weighted imaging. Signals from substances with different magnetic susceptibilities compared to their neighboring tissue will become out of phase with these tissues at sufficiently long echo times (TEs). Thus, phase(More)
For the last century, there has been great physiological interest in brain iron and its role in brain function and disease. It is well known that iron accumulates in the brain for people with Huntington's disease, Parkinson's disease, Alzheimer's disease, multiple sclerosis, chronic hemorrhage, cerebral infarction, anemia, thalassemia, hemochromatosis,(More)
This paper is devoted to a theory of the NMR signal behavior in biological tissues in the presence of static magnetic field inhomogeneities. We have developed an approach that analytically describes the NMR signal in the static dephasing regime where diffusion phenomena may be ignored. This approach has been applied to evaluate the NMR signal in the(More)
To assess a magnetic resonance (MR) imaging method for depicting small veins in the brain, a three-dimensional, long echo time, gradient-echo sequence that depended on the paramagnetic property of deoxyhemoglobin was used. Veins with diameters smaller than a pixel were depicted. This MR imaging method is easy to implement and may prove helpful in the(More)
Susceptibility-weighted imaging (SWI) is a new neuroimaging technique, which uses tissue magnetic susceptibility differences to generate a unique contrast, different from that of spin density, T1, T2, and T2*. In this review (the first of 2 parts), we present the technical background for SWI. We discuss the concept of gradient-echo images and how we can(More)
PURPOSE To establish a baseline of phase differences between tissues in a number of regions of the human brain as a means of detecting iron abnormalities using magnetic resonance imaging (MRI). MATERIALS AND METHODS A fully flow-compensated, three-dimensional (3D), high-resolution, gradient-echo (GRE) susceptibility-weighted imaging (SWI) sequence was(More)
We have measured the T2* signal response associated with cortical activation due to finger motion at 1.5 Tesla. Both thin slice 2D and 3D images show signal intensity changes which vary from 2% to 32% depending on volunteer, echo time, slice thickness, and in-plane resolution. The largest signal change occurred for the thinnest slices and highest resolution(More)
The purpose of this study was to investigate the relationship between the magnetic susceptibility of brain tissue and iron concentration. Phase shifts in gradient-echo images (TE = 60 ms) were measured in 21 human subjects, (age 0.7-45 years) and compared with published values of regional brain iron concentration. Phase was correlated with brain iron(More)
Neuroimaging with iron-sensitive MR sequences [gradient echo T2* and susceptibility-weighted imaging (SWI)] identifies small signal voids that are suspected brain microbleeds. Though the clinical significance of these lesions remains uncertain, their distribution and prevalence correlates with cerebral amyloid angiopathy (CAA), hypertension, smoking, and(More)
This paper reviews the recent development of a new high-resolution magnetic resonance imaging approach to visualizing small veins in the human brain with diameters in the sub-millimeter range, which is smaller than a voxel. It briefly introduces the physical background of the underlying bulk magnetic susceptibility effects, on which this approach is based,(More)