Learn More
Cholinergic pathways serve important functions in learning and memory processes, and deficits in cholinergic transmission occur in Alzheimer disease (AD). A subset of muscarinic cholinergic receptors are linked to G-proteins that activate phospholipase C, resulting in the liberation of inositol trisphosphate and Ca2+ release from intracellular stores. We(More)
Removal of extracellular glutamate at synapses, by specific high-affinity glutamate transporters, is critical to prevent excitotoxic injury to neurons. Oxidative stress has been implicated in the pathogenesis of an array of prominent neurodegenerative conditions that involve degeneration of synapses and neurons in glutamatergic pathways including stroke,(More)
We investigated the effect of uncoupling astrocytic gap junctions on neuronal vulnerability to oxidative injury in embryonic rat hippocampal cell cultures. Mixed cultures (neurons growing on an astrocyte monolayer) treated with 18-alpha-glycyrrhetinic acid (GA), an uncoupler of gap junctions, showed markedly enhanced generation of intracellular peroxides(More)
Alzheimer's disease is a progressive neurodegenerative disorder that affects primarily learning and memory functions. There is significant neuronal loss and impairment of metabolic functioning in the temporal lobe, an area believed to be crucial for learning and memory tasks. Aggregated deposits of amyloid beta-peptide may have a causative role in the(More)
Amyloid beta-peptide (A beta) is deposited as insoluble fibrils in the brain parenchyma and cerebral blood vessels in Alzheimer's disease (AD). In addition to neuronal degeneration, cerebral vascular alterations indicative of damage to vascular endothelial cells and disruption of the blood-brain barrier occur in AD. Here we report that A beta25-35 can(More)
Astrocytes possess plasma membrane glutamate transporters that rapidly remove glutamate from the extracellular milieu and thereby prevent excitotoxic injury to neurons. Cellular oxidative stress is increased in neural tissues in a variety of acute and chronic neurodegenerative conditions. Recent findings suggest that oxidative stress increases neuronal(More)
Considerable data indicate that oxidative stress and membrane lipid peroxidation contribute to neuronal degeneration in an array of age-related neurodegenerative disorders. In contrast, the impact of subtoxic levels of membrane lipid peroxidation on neuronal function is largely unknown. We now report that 4-hydroxynonenal (HNE), an aldehydic product of(More)
Maurotoxin (MTX), purified from the scorpionid Scorpio maurus is a potent ligand for potassium channels. It shows a broad specificity as being active on Kv1.1 (Kd = 37 nM), Kv1.2 (Kd = 0.8 nM), Kv1.3 (Kd = 150 nM) voltage-gated potassium channels, as well as on small-conductance calcium-activated potassium channels. It has a unique disulfide pairing among(More)
TsKapa (TsK), purified from the Buthidae Tityus serrulatus is a very high potent ligand for small-conductance apamin-sensitive calcium-activated potassium channels (SK). It is able to efficiently compete with apamin for binding on this channel (K0.5 = 0.3 nM) [Legros, C. et al., FEBS Lett. 390:81-84, 1996]. The solution structure of TsK has been determined(More)
We investigated the modulation by growth factors of phospholipase C (PLC)-linked glutamate receptors during in vitro development of hippocampal cultures. In defined medium, glial cells represent between 3 and 14% of total cell number. When we added basic fibroblast growth factor (bFGF) 2 h after plating, we found: (i) a neuroprotection from naturally(More)