E. Litvinovich

Learn More
The rate of neutrino-electron elastic scattering interactions from 862 keV (7)Be solar neutrinos in Borexino is determined to be 46.0±1.5(stat)(-1.6)(+1.5)(syst) counts/(day·100  ton). This corresponds to a ν(e)-equivalent (7)Be solar neutrino flux of (3.10±0.15)×10(9)  cm(-2) s(-1) and, under the assumption of ν(e) transition to other active neutrino(More)
We report the direct measurement of the 7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV 7Be neutrinos is 49+/-3stat+/-4syst counts/(day.100 ton). The hypothesis of no oscillation for 7Be solar neutrinos is inconsistent with our measurement at the 4sigma(More)
We observed, for the first time, solar neutrinos in the 1.0-1.5 MeV energy range. We determined the rate of pep solar neutrino interactions in Borexino to be 3.1±0.6{stat}±0.3{syst}  counts/(day·100  ton). Assuming the pep neutrino flux predicted by the standard solar model, we obtained a constraint on the CNO solar neutrino interaction rate of <7.9 (More)
Geo–neutrinos, electron anti–neutrinos produced in β decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet’s interior. We report the first observation at more than 3σ C.L. of geo–neutrinos, performed with the Borexino detector at Laboratori Nazionali del Gran Sasso. Anti–neutrinos are detected through the(More)
Results of background measurements with a prototype of the Borexino detector were used to search for 478 keV solar axions emitted in the M1-transitions of Li ∗ . The Compton conversion of axion to a photon A+ e→ e+γ, axioelectric effect A+ e+Z → e+Z, decay of axion in two photons A→ 2γ and Primakoff conversion on nuclei A+Z → γ+Z are considered. The upper(More)
A search for neutrino and antineutrino events correlated with 2,350 gamma-ray bursts (GRBs) is performed with Borexino data collected between December 2007 and November 2015. No statistically significant excess over background is observed. We look for electron antineutrinos (ν̄e) that inverse beta decay on protons with energies from 1.8 MeV to 15 MeV and(More)
The Pauli exclusion principle (PEP) has been tested for nucleons (n, p) in C and O nuclei, using the results of background measurements with the prototype of the Borexino detector, the Counting Test Facility (CTF). The approach consisted of a search for γ, n, p and/or α’s emitted in a non-Paulian transition of 1P shell nucleons to the filled 1S1/2 shell in(More)
The decays of (214)Po into (210)Pb and of (212)Po into (208)Pb tagged by the previous decays from (214)Bi and (212)Bi have been studied inserting quartz vials inside the Counting Test Facility (CTF) at the underground laboratory in Gran Sasso (LNGS). We find that the mean lifetime of (214)Po is (236.00 ± 0.42(stat) ± 0.15(syst)) μs and that of (212)Po is(More)
Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single monoenergetic photon was(More)
  • 1