Learn More
1. The L-arginine derivatives NG-nitro-L-arginine (L-NOARG) and NG-nitro-L-arginine methyl ester (L-NAME) have been widely used to inhibit constitutive NO synthase (NOS) in different biological systems. This work was carried out to investigate whether L-NAME is a direct inhibitor of NOS or requires preceding hydrolytic bioactivation to L-NOARG for(More)
Nitric oxide (NO) synthases contain FAD, FMN, heme, and (6R)-5,6,7,8-tetrahydro-L-biopterin as prosthetic groups. We have characterized the pteridine-binding site of purified brain NO synthase, using 3H-labeled (6R)-5,6,7,8-tetrahydro-L-biopterin as radioligand. Association of [3H]tetrahydrobiopterin followed second-order kinetics (kon = 1.3 x 10(6) M-1(More)
Deep tissue injury (DTI) is a serious pressure ulcer which onsets in skeletal muscle tissues adjacent to weight-bearing bony prominences. Recent literature points at sustained large deformations in muscle tissue, which translate to static stretching of the plasma membrane (PM) at the cell-scale, as the primary cause of accumulated cell death in DTI. It has(More)
Carboxy-PTIO reacts rapidly with NO to yield NO2 and has been used as a scavenger to test the importance of nitric oxide (NO) in various physiological conditions. This study investigated the effects of carboxy-PTIO on several NO- and peroxynitrite-mediated reactions. The scavenger potently inhibited NO-induced accumulation of cGMP in endothelial cells but(More)
Dilute hydrogen bromide in trifluoroacetic acid containing pentamethylbenzene and thioanisole was used in the cleavage and deprotection of peptides on MBHA-resin. Particular attention was paid to potential applicability of the method to kilogram scale synthesis of thymosin alpha 1. In the HPLC purification of the peptides, acetonitrile was replaced by(More)
Multiphysics modeling is an emerging approach in cellular bioengineering research, used for simulating complex biophysical interactions and their effects on cell viability and function. Our goal in the present study was to integrate cell-specific finite element modeling--which we have developed in previous research to simulate deformation of individual(More)
In the design of such complex buildings as hospitals the planner's problem is to provide a minimal amount of permanent structure so that it shall not get in the way of functional behavior of the occupants and their ability to change their environment. The purpose of this study was to discover which intervals seem to occur in hospitals by measuring the room(More)