Learn More
The average mass composition of cosmic rays with primary energies between 10 17 and 10 18 eV has been studied using a hybrid detector consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon array. Measurements have been made of the change in the depth of shower maximum and the muon density as a function of energy. The results show(More)
We present the first measurement of elliptic (v(2)) and triangular (v(3)) flow in high-multiplicity (3)He+Au collisions at √(s(NN))=200  GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in (3)He+Au and in p+p collisions and indicate that collective effects dominate the second and third Fourier(More)
We have searched for correlations between the pointing directions of ultrahigh energy cosmic rays observed by the High Resolution Fly's Eye experiment and Active Galactic Nuclei (AGN) visible from its northern hemisphere location. No correlations, other than random correlations, have been found. We report our results using search parameters prescribed by(More)
The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6 • and is sensitive to cosmic rays with energies above 10 18 eV. HiRes is thus an excellent instrument for the study of the arrival directions of ultrahigh energy cosmic rays. We present the results of a(More)
Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes) detector are very sensitive to upward-going, Earth-skimming ultrahigh energy electron-neutrino-induced showers. This is due to the relatively large interaction cross sections of these high-energy neutrinos and to the Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a(More)
Differential measurements of the elliptic (v(2)) and hexadecapole (v(4)) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p(T)) and collision centrality or number of participant nucleons (N(part)) for Au+Au collisions at sq.rt(s(NN))=200  GeV. The v(2,4) measurements at pseudorapidity |η|≤0.35, obtained with(More)
The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at √[s(NN)]=200 GeV. The p(T) of the photon is an excellent approximation to the initial p(T) of the jet and the ratio z(T)=p(T)(h)/p(T)(γ) is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the(More)
Back-to-back hadron pair yields in d+Au and p+p collisions at √s(NN)=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |η|<0.35 and the associated hadron at forward rapidity (deuteron direction, 3.0<η<3.8). Pairs were also detected(More)
Large parity-violating longitudinal single-spin asymmetries A(L)(e+) = -0.86(-0.14) (+0.30) and A(L)(e-) = 0.88(-0.71) (+0.12) are observed for inclusive high transverse momentum electrons and positrons in polarized p+p collisions at a center-of-mass energy of sqrt[s] = 500 GeV with the PHENIX detector at RHIC. These e± come mainly from the decay of W± and(More)
The second Fourier component v(2) of the azimuthal anisotropy with respect to the reaction plane is measured for direct photons at midrapidity and transverse momentum (p(T)) of 1-12 GeV/c in Au + Au collisions at √s(NN)] = 200 GeV. Previous measurements of this quantity for hadrons with p(T) < 6 GeV/c indicate that the medium behaves like a nearly perfect(More)