Learn More
Based on its location, connectivity and neurotransmitter content, the dorsal thalamic zone in birds appears to be homologous to the intralaminar, midline, and mediodorsal nuclear complex in the thalamus of mammals. We investigated the neuroactive substances used by thalamostriatal projection neurons of the dorsal thalamic zone in the pigeon. Single-labeling(More)
A dopaminergic projection from the midbrain to the striatal portion of the basal ganglia is present in reptiles, birds, and mammals. Although the ultrastructure of these fibers and terminals within the striatum has been studied extensively in mammals, little information is available on the ultrastructure of this projection in nonmammals. In the present(More)
Immunohistochemical studies in rats have demonstrated dopaminergic input onto medium spiny neurons of the striatum. Medium spiny neurons, however, are known to consist of two major neuropeptide-specific types, those containing substance P (SP) and those containing enkephalin. Although both of these types have been shown to receive dopaminergic input onto(More)
Medium spiny projection neurons of the striatum consist of two major neuropeptide-specific types, one type containing substance P and another type containing enkephalin. Both of these types have been shown to receive dopaminergic input onto their perikarya and proximal dendrites. However, whether each of these types receives direct dopaminergic input onto(More)
Single- and double-label electron microscopic immunocytochemistry was used to examine the ultrastructure of striatal neurons containing nitric oxide synthase (NOS+) and evaluate the synaptic relationship of NOS+ striatal neurons with those containing parvalbumin (PV+). In both the single-label and double-label studies, NOS+ perikarya were observed to(More)
The vast majority of striatonigral projection neurons in pigeons contain substance P (SP), and the vast majority of SP-containing fibers terminating in the substantia nigra arise from neurons in the striatum. To help clarify the role of striatonigral projection neurons, we conducted electron microscopic single- and double-label immunohistochemical studies(More)
For many neural regions it is of interest to know the identity of the target structures of two different types of inputs to that neural region. Such studies require use of a triple-label immunohistochemical method to differentially label the class of target structure and the two types of input so that they can be visualized at the electron microscopic (EM)(More)
Electron microscopic immunohistochemical double-label studies were carried out in pigeons to characterize the ultrastructural organization and postsynaptic targets of enkephalinergic (ENK+) striatonigral projection. ENK+ terminals in the substantia nigra were labeled with antileucine-enkephalin antiserum by using peroxidase-antiperoxidase methods, and(More)
  • 1