Learn More
BACKGROUND Small, untranslated RNA molecules were identified initially in bacteria, but examples can be found in all kingdoms of life. These RNAs carry out diverse functions, and many of them are regulators of gene expression. Genes encoding small, untranslated RNAs are difficult to detect experimentally or to predict by traditional sequence analysis(More)
Antisense RNA-mediated regulation is widespread in bacteria. Most antisense RNA control systems have been found in plasmids, phages, and transposons. Fewer examples were identified in bacterial chromosomes. This chapter summarizes our current knowledge about antisense RNAs with respect to their occurrence, their biological roles, and their diverse(More)
This paper shows that the small RNA MicA (previously SraD) is an antisense regulator of ompA in Escherichia coli. MicA accumulates upon entry into stationary phase and down-regulates the level of ompA mRNA. Regulation of ompA (outer membrane protein A), previously attributed to Hfq/mRNA binding, is lost upon deletion of the micA gene, whereas overexpression(More)
Recent bioinformatics-aided searches have identified many new small RNAs (sRNAs) in the intergenic regions of the bacterium Escherichia coli. Here, a shot-gun cloning approach (RNomics) was used to generate cDNA libraries of small sized RNAs. Besides many of the known sRNAs, we found new species that were not predicted previously. The present work brings(More)
Small noncoding RNAs have been discovered at a staggering rate in Escherichia coli and many other bacteria. Most of the sRNAs of known function regulate gene expression by binding to specific mRNAs or proteins. Given the scores of sRNAs of unknown function, the identification of their cellular targets has become urgent. Here, we review the diverse(More)
Small RNAs are ubiquitously present regulators in all kingdoms of life. Most bacterial and archaeal small RNAs (sRNAs) act by antisense mechanisms on multiple target mRNAs, thereby globally affecting essentially any conceivable trait-stress responses, adaptive metabolic changes, virulence etc. The sRNAs display many distinct mechanisms of action, most of(More)
More than 60 small RNAs (sRNA) have been identified in E. coli. The functions of the majority of these sRNAs are still unclear. For the few sRNAs characterized, expression and functional studies indicate that they act under stress conditions. Here, we describe a novel E. coli chromosome locus that is part of the SOS response to DNA damage. This locus(More)
We previously reported on an SOS-induced toxin, TisB, in Escherichia coli and its regulation by the RNA antitoxin IstR-1. Here, we addressed the mode of action of TisB. By placing the tisB reading frame downstream of a controllable promoter on a plasmid, toxicity could be analysed in the absence of the global SOS response. Upon induction of TisB, cell(More)
Roughly 10% of all genes in Escherichia coli are controlled by the global transcription factor Lrp, which responds to nutrient availability. Bioinformatically, we identified lrp as one of several putative targets for the sRNA MicF, which is transcriptionally downregulated by Lrp. Deleting micF results in higher Lrp levels, while overexpression of MicF(More)
Chromosomally encoded toxin-antitoxin (TA) systems are abundantly present in bacteria and archaea. They have become a hot topic in recent years, because-after many frustrating years of searching for biological functions-some are now known to play roles in persister formation. Persister cells represent a subset of a bacterial population that enters a dormant(More)