Learn More
The effect of different aeration conditions during the culture of Azotobacter vinelandii on the production and molecular mass of alginate was evaluated in shake flasks. In baffled flasks, the bacteria grew faster and produced less alginate (1.5 g/l) than in conventional (unbaffled) flasks (4.5 g/l). The viscosity of the culture broth was also influenced by(More)
Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have(More)
The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and(More)
The effect of oscillating dissolved oxygen tension (DOT) on the metabolism of an exopolysaccharide-producing bacteria (Azotobacter vinelandii) was investigated, particularly on the mean molecular weight (MMW) of the alginate produced. Sinusoidal DOT oscillations were attained by manipulating the oxygen and nitrogen partial pressures at the inlet of a 1.0 L(More)
Alginate is an industrially relevant linear copolymer composed of β-1,4-linked D-mannuronic acid and its C-5 epimer L-guluronic acid. The rheological and gel-forming properties of alginates depend on the molecular weight and the relative content of the two monomers. Alginate produced by Azotobacter vinelandii was shown to be degraded towards the end of the(More)
The mean sizes and size distributions of air bubbles and viscous castor oil drops were studied in a salt-rich aqueous solution (medium), first separately, and then simultaneously as a three-phase system. The dispersion was created in a 150-mm-diameter stirred tank equipped with a Rushton turbine, and the sizes were measured using an advanced video(More)
The influence of oxygen transfer rate (OTR) on the molecular mass of alginate was studied. In batch cultures without dissolved oxygen tension (DOT) control and at different agitation rates, the DOT was nearly zero and the OTR was constant during biomass growth, hence the cultures were oxygen-limited. The OTR reached different maximum levels (OTRmax) and(More)
The transcription of genes involved in alginate polymerization and depolymerization, as well as the alginase activity (extracellular and intracellular) under oxygen-limited and non oxygen-limited conditions in cultures of A. vinelandii, was studied. Two levels of dissolved oxygen tension (DOT) (1% and 5%, oxygen-limited and non-oxygen-limited, respectively)(More)
Mutant AT268 of Azotobacter vinelandii — showing diminished production of poly-β-hydroxybutyrate (PHB) due to a mutation in phbR (the gene coding for the transcriptional activator of the phbBAC biosynthetic operon); mutant CNT26, containing a mutation (muc26) that increases the transcription of gene algD (encoding GDP mannose dehydrogenase, the key enzyme(More)