Learn More
1. Homogenates of rat liver, spleen, heart and kidney form lipid peroxides when incubated in vitro and actively catalyse peroxide formation in emulsions of linoleic acid or linolenic acid. 2. In liver, catalytic activity is distributed throughout the nuclear, mitochondrial and microsomal fractions and is present in the 100000g supernatant. Activity is weak(More)
A quantitative cytochemical method was developed for measuring the GSH (reduced glutathione) content of hepatocytes in different regions of the rat liver lobule. Use of this method enabled us to show that GSH is not evenly distributed within the rat liver lobule. The hepatocytes located within 100 micrometer of the central vein contain much less GSH than do(More)
A comparison of the staining affinities of aldehyde-fuchsin and the Schiff reagent. Rapid data analysis in quantitative cytochemistry It is now possible to study the biochemistry of single cells in their normal tissue environment by quantitative cytochemistry. The techniques involved have been described by Chayen et al. (1973) and have been used in our(More)
1. Liver microsomes form lipid peroxide when incubated with ascorbate or NADPH, but not with NADH. Increasing the concentration of ascorbate beyond the optimum (0.5mm) decreases the rate of lipid peroxide formation, but this effect does not occur with NADPH. Other reducing agents such as p-phenylenediamine or ferricyanide were not able to replace ascorbate(More)
The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept(More)