#### Filter Results:

- Full text PDF available (3)

#### Publication Year

2006

2008

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- M. Fazel, E. Candès, B. Recht, P. Parrilo
- 2008

— In this paper, we focus on compressed sensing and recovery schemes for low-rank matrices, asking under what conditions a low-rank matrix can be sensed and recovered from incomplete, inaccurate, and noisy observations. We consider three schemes, one based on a certain Restricted Isometry Property and two based on directly sensing the row and column space… (More)

- E.J. Candes, B. Recht
- 2008 46th Annual Allerton Conference on…
- 2008

Suppose that one observes an incomplete subset of entries selected uniformly at random from a low-rank matrix. When is it possible to complete the matrix and recover the entries that have not been seen? We show that in very general settings, one can perfectly recover all of the missing entries from a sufficiently large random subset by solving a convex… (More)

- E. Candes, J. Romberg
- Data Compression Conference (DCC'06)
- 2006

We address the problem of encoding signals which are sparse, i.e. signals that are concentrated on a set of small support. Mathematically, such signals are modeled as elements in the /spl lscr//sub p/ ball for some p < 1. We describe a strategy for encoding elements of the /spl lscr//sub p/ ball which is universal in that 1) the encoding procedure is… (More)

- ‹
- 1
- ›