E Bandman

Learn More
The expression of neonatal myosin heavy chain (MHC) was examined in developing embryonic chicken muscle cultures using a monoclonal antibody (2E9) that has been shown to be specific for that isoform (Bandman, E., 1985, Science (Wash. DC), 227: 780-782). After 1 wk in vitro some myotubes could be stained with the antibody, and the number of cells that(More)
The pectoralis muscle of birds provides virtually all the power for the downstroke of the wing during flight. In adults it consists almost entirely of FOG (fast-twitch oxidative-glycolytic) and/or FG (fast-twitch glycolytic) fiber types. The aims of this study are to contrast MyHC (myosin heavy chain) transitions occurring within avian FG and FOG fibers(More)
Myosin isoforms contribute to the heterogeneity and adaptability of skeletal muscle fibers. Besides the well-characterized slow and fast muscle myosins, there are those isoforms that appear transiently during the course of muscle development. At a stage of development when two different myosins are coexpressed, the possibility arises for the existence of(More)
Using a double antibody sandwich ELISA we examined the heavy chain isoform composition of myosin molecules isolated from chicken pectoralis major muscle during different stages of development. At 2- and 40-d posthatch, when multiple myosin heavy chain isoforms are being synthesized, we detected no heterodimeric myosins, suggesting that myosins are(More)
The expression of myosin heavy chain isoforms was examined in normal and dystrophic chicken muscle with a monoclonal antibody specific for neonatal myosin. Adult dystrophic muscle continued to contain neonatal myosin long after it disappeared from adult normal muscle. A new technique involving western blotting and peptide mapping demonstrated that the(More)
During development of chicken pectoralis muscle, a neonatal myosin heavy-chain isoform is supplanted progressively by an adult isoform. This expression is under neuronal control. In this study we test the hypothesis that developmental myosin transformations are initiated near the motor endplate of each muscle fiber, thereafter progressing toward the fiber(More)
Colloidal gold-conjugated monoclonal antibodies were prepared to stage-specific fast myosin heavy chain (MHC) isoforms of developing chicken pectoralis major (PM). Native thick filaments from different stages of development were reacted with these antibodies and examined in the electron microscope to determine their myosin isoform composition. Filaments(More)
The presence of diazepam in culutres of chicken embryo myoblasts arrests normal muscle cell differentiation. High concentrations of the drug reversibly prevent myoblasts from fusing to form multinucleated myotubes. Lower concentrations of diazepam allow cell fusion to occur, but inhibit the synthesis and accumulation of myosin heavy chain, implying that(More)