E. Alvarez-Lacalle

Learn More
Thoughts and ideas are multidimensional and often concurrent, yet they can be expressed surprisingly well sequentially by the translation into language. This reduction of dimensions occurs naturally but requires memory and necessitates the existence of correlations, e.g., in written text. However, correlations in word appearance decay quickly, while(More)
We present a model for the actin contractile ring of adherent animal cells. The model suggests that the actin concentration within the ring and consequently the power that the ring exerts both increase during contraction. We demonstrate the crucial role of actin polymerization and depolymerization throughout cytokinesis, and the dominance of viscous(More)
Calcium release from the sarcoplasmic reticulum (SR) plays a central role in the regulation of cardiac contraction and rhythm in mammals and humans but its role is controversial in teleosts. Since the zebrafish is an emerging model for studies of cardiovascular function and regeneration we here sought to determine if basic features of SR calcium release are(More)
Electromechanical alternans is a beat-to-beat alternation in the strength of contraction of a cardiac cell, which can be caused by an instability of calcium cycling. Using a distributed model of subcellular calcium we show that alternans occurs via an order-disorder phase transition which exhibits critical slowing down and a diverging correlation length. We(More)
The different finger morphologies that arise at the interface separating two immiscible fluids in a rotating Hele-Shaw cell are studied numerically. The whole range of viscosity contrast is analyzed and a variety of fingering patterns systematically introduced, including the case in which the inner fluid is less viscous than the outer one. Our numerical(More)
We analyze the characteristics of front propagation in activity of 1-D neuronal cultures by numerical simulations, using only excitatory dynamics. Experimental results in 1-D cultures of hippocampal neurons from rats have shown the spontaneous generation of a slow, low amplitude pulse that precedes a high amplitude, fast pulse that propagates through all(More)
We demonstrate that wetting effects at moving contact lines have a strong impact in viscous fingering patterns. Experiments in a rotating Hele-Shaw (HS) cell, dry or prewetted, show consistent morphological differences. When the wetting fluid invades a dry region, contact angle dynamics yield a kinetic contribution to the interface pressure drop that scales(More)
We develop a method to quantify the changes in heart rate dynamics during local myocardial ischemia induced by a percutaneous transluminal coronary angioplasty procedure (PTCA). The method introduces an index measuring the nonlinear content of the beat-to-beat (RR) time series by using nonlinear time series techniques such as surrogate data analysis and(More)
We show, both theoretically and experimentally, that the interface between two viscous fluids in a Hele-Shaw cell can be nonlinearly unstable before the Saffman-Taylor linear instability point is reached. We identify the family of exact elastica solutions [Nye et al., Eur. J. Phys. 5, 73 (1984)]] as the unstable branch of the corresponding subcritical(More)
We have developed an automatic method for the analysis and identification of dynamical regimes in intracellular calcium patterns from confocal calcium images. The method allows the identification of different dynamical patterns such as spatially concordant and discordant alternans, irregular behavior or phase-locking regimes such as period doubling or(More)