Learn More
The possible contribution of Na(+)-Ca(2+) exchange to the triggering of Ca(2+) release from the sarcoplasmic reticulum in ventricular cells remains unresolved. To gain insight into this issue, we measured the "trigger flux" of Ca(2+) crossing the cell membrane in rabbit ventricular myocytes with Ca(2+) release disabled pharmacologically. Under conditions(More)
Flash photolysis of “caged” compounds using ultraviolet light is a powerful experimental technique for producing rapid changes in concentrations of bioactive signaling molecules. Studies that employ this technique have used diverse strategies for controlling the spatial and temporal application of light to the specimen. In this paper, we describe a new(More)
This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation-contraction coupling and arrhythmias: Na(+) channel and Na(+) transport. The goal of the symposium was to bring together experts in the field to(More)
Spontaneous Ca²(+) waves in cardiac muscle cells are thought to arise from the sequential firing of local Ca²(+) sparks via a fire-diffuse-fire mechanism. This study compares the ability of the ryanodine receptor (RyR) blocker ruthenium red (RuR) to inhibit these two types of Ca²(+) release in permeabilised rabbit ventricular cardiomyocytes. Perfusing with(More)
Membrane current through voltage-sensitive calcium ion channels at the postsynaptic density of a dendritic spine is investigated. To simulate the ion channels that carry such current and the resulting temporal and spatial distribution of concentration, current, and voltage within the dendritic spine, the immersed boundary method with electrodiffusion is(More)
  • 1