E. A. Muljarov

Learn More
It is widely believed that, due to its discrete nature, excitonic states in a quantum dot coupled to dispersionless longitudinal-optical (LO) phonons form everlasting mixed states (exciton polarons) showing no line broadening in the spectrum. This is indeed true if the model is restricted to a limited number of excitonic states in a quantum dot. We show,(More)
In spite of their different natures, light and matter can be unified under the strong-coupling regime, yielding superpositions of the two, referred to as dressed states or polaritons. After initially being demonstrated in bulk semiconductors and atomic systems, strong-coupling phenomena have been recently realized in solid-state optical microcavities.(More)
Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent(More)
A microscopic theory of optical transitions in quantum dots with a carrier-phonon interaction is developed. Virtual transitions into higher confined states with acoustic phonon assistance add a quadratic phonon coupling to the standard linear one, thus extending the independent boson model. Summing infinitely many diagrams in the cumulant, a numerically(More)
A new microscopic approach to the optical transitions in quantum dots and quantum dot molecules, which accounts for both diagonal and nondiagonal exciton-phonon interaction, is developed. The cumulant expansion of the linear polarization is generalized to a multilevel system and is applied to calculation of the full time dependence of the polarization and(More)
Under optical excitation, coupled quantum wells are known to reveal fascinating features in the photoluminescence pattern originating from dipole orientated indirect excitons. The appearance of an external ring has been attributed to macroscopic charge separation in the quantum well plane. We present a classical model of nonlinear diffusion to account for(More)
We demonstrate an efficient switching between strong and weak exciton-photon coupling regimes in microcavity-embedded asymmetric double quantum wells, controlled by an applied electric field. We show that a fine-tuning of the electric field leads to drastic changes in the polariton properties, with the polariton ground state being redshifted by a few meV(More)