Learn More
Evidence indicates that noradrenaline elicits anti-inflammatory actions in the central nervous system (CNS), and plays a neuroprotective role where inflammatory events contribute to pathology. Here we examined the ability of pharmacological enhancement of central noradrenergic tone to impact upon activation of the IL-1 system in rat brain. Treatment with(More)
Evidence indicates that the monoamine neurotransmitter noradrenaline elicits anti-inflammatory actions in the central nervous system (CNS), and consequently may play a neuroprotective role where inflammatory events contribute to CNS pathology. Here we examined the ability of pharmacologically enhancing central noradrenergic tone to induce expression of(More)
Pharmacological stabilization of hypoxia-inducible factor (HIF) through prolyl hydroxylase (PHD) inhibition limits mucosal damage associated with models of murine colitis. However, little is known about how PHD inhibitors (PHDi) influence systemic immune function during mucosal inflammation or the relative importance of immunological changes to mucosal(More)
OBJECTIVE Eosinophils reside in the colonic mucosa and increase significantly during disease. Although a number of studies have suggested that eosinophils contribute to the pathogenesis of GI inflammation, the expanding scope of eosinophil-mediated activities indicate that they also regulate local immune responses and modulate tissue inflammation. We sought(More)
In this study we examined the impact of systemic treatment with the long-acting brain penetrant β2-adrenoceptor agonist clenbuterol on NFκB activity and IκB expression in rat brain. Clenbuterol decreased NFκB activity (p65 DNA binding) in nuclear extracts prepared from rat cortex and hippocampus for up to 8h following a single treatment. This was(More)
Organized lymphoid tissues like the thymus first appeared in jawed vertebrates around 500 million years ago and have evolved to equip the host with a network of specialized sites, strategically located to orchestrate strict immune-surveillance and efficient immune responses autonomously. The gut-associated lymphoid tissues maintain a mostly tolerant(More)
The long-acting, highly lipophilic, β2-adrenoceptor agonist clenbuterol may represent a suitable therapeutic agent for the treatment of neuroinflammation as it drives an anti-inflammatory response within the CNS. However, clenbuterol is also known to increase the expression of IL-1β in the brain, a potent neuromodulator that plays a role in provoking(More)
  • 1