Dylan W Domaille

Learn More
Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell(More)
The brain is a singular organ of unique biological complexity that serves as the command center for cognitive and motor function. As such, this specialized system also possesses a unique chemical composition and reactivity at the molecular level. In this regard, two vital distinguishing features of the brain are its requirements for the highest(More)
Metals are essential for sustaining all forms of life, but alterations in their cellular homeostasis are connected to severe human disorders, including cancer, diabetes and neurodegenerative diseases. Fluorescent small molecules that respond to metal ions in the cell with appropriate selectivity and sensitivity offer the ability to probe physiological and(More)
Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process(More)
Coppersensor-1 (CS1) is a small-molecule, membrane-permeable fluorescent dye for imaging labile copper pools in biological samples, including live cells. This probe, comprising a boron dipyrromethene (BODIPY) chromophore coupled to a thioether-rich receptor, has a picomolar affinity for Cu+ with high selectivity over competing cellular metal ions. CS1(More)
We identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense(More)
We report the synthesis, characterization, and protein sensing capabilities of M13 bacteriophage-DNA bioconjugates. DNA oligonucleotides were conjugated to M13 through acyl hydrazone linkages. In one case, DNAzymes retained their catalytic ability when anchored to the virus coat, and in a separate study, the dynamic nature of the hydrazone allowed for(More)
Dynamic fluxes of s-block metals like potassium, sodium, and calcium are of broad importance in cell signaling. In contrast, the concept of mobile transition metals triggered by cell activation remains insufficiently explored, in large part because metals like copper and iron are typically studied as static cellular nutrients and there are a lack of direct,(More)
We present the synthesis, properties, and biological applications of Peroxy Lucifer 1 (PL1), a new fluorescent probe for imaging hydrogen peroxide produced in living cells by a ratiometric response. PL1 utilizes a chemoselective boronate-based switch to detect hydrogen peroxide by modulation of internal charge transfer (ICT) within a 1,8-naphthalimide dye.(More)
Presented here is a cytocompatible covalently adaptable hydrogel uniquely capable of mimicking the complex biophysical properties of native tissue and enabling natural cell functions without matrix degradation. Demonstrated is both the ability to control elastic modulus and stress relaxation time constants by more than an order of magnitude while predicting(More)