Dylan F. Glas

Learn More
We present a tangible user interface based upon mediaBlocks: small, electronically tagged wooden blocks that serve as physical icons (“phicons”) for the containment, transport, and manipulation of online media. MediaBlocks interface with media input and output devices such as video cameras and projectors, allowing digital media to be rapidly “copied” from a(More)
This paper proposes a model of approach behavior with which a robot can initiate conversation with people who are walking. We developed the model by learning from the failures in a simplistic approach behavior used in a real shopping mall. Sometimes people were unaware of the robot's presence, even when it spoke to them. Sometimes, people were not sure(More)
In this paper we present a method for determining body orientation and pose information from laser scanner data using particle filtering with an adaptive modeling algorithm. A parametric human shape model is recursively updated to fit observed data after each resampling step of the particle filter. This updated model is then used in the likelihood(More)
This paper reports the challenges of developing multiple social robots that operate in a shopping mall. We developed a networked robot system that coordinates multiple social robots and sensors to provide efficient service to customers. It directs the tasks of robots based on their positions and people's walking behavior, manages the paths of robots, and(More)
Laser range finders are a non-invasive tool which can be used for anonymously tracking the motion of people and robots in real-world environments with high accuracy. Based on a commercial system we have developed, this paper addresses two practical issues of using networks of portable laser range finders in field environments. We first describe a technique(More)
For a robot providing services to people in a public space such as a train station or a shopping mall, it is important to distinguish potential customers, such as window-shoppers, from other people, such as busy commuters. In this paper, we present a series of techniques for anticipating people's behavior in a public space, mainly based on the analysis of(More)
We present a novel design framework enabling the development of social robotics applications by cross-disciplinary teams of programmers and interaction designers. By combining a modular back-end software architecture with an easy-to-use graphical interface for developing interaction sequences, this system enables programmers and designers to work in(More)
Robust localization of robots and reliable tracking of people are both critical requirements for the deployment of service robots in real-world environments. In crowded public spaces, occlusions can impede localization using on-board sensors. At the same time, teams of service robots working together need to share the locations of people and other robots on(More)