Dylan B. Millet

Learn More
[1] Two Aerodyne aerosol mass spectrometers (AMSs) were deployed at Trinidad Head on the north Californian coast during the National Oceanographic and Atmospheric Administration Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) experiment, to study the physiochemical properties of submicron aerosol particles within the Pacific marine(More)
[1] Space-borne formaldehyde (HCHO) column measurements from the Ozone Monitoring Instrument (OMI), with 13 24 km nadir footprint and daily global coverage, provide new constraints on the spatial distribution of biogenic isoprene emission from North America. OMI HCHO columns for June-August 2006 are consistent with measurements from the earlier GOME(More)
We use recent aircraft measurements of a comprehensive suite of anthropogenic halocarbons, carbon monoxide (CO), and related tracers to place new constraints on North American halocarbon emissions and quantify their global warming potential. Using a chemical transport model (GEOS-Chem) we find that the ensemble of observations are consistent with our prior(More)
Land-use regression models (LUR) estimate outdoor air pollution at high spatial resolution. Previous LURs have generally focused on individual cities. Here, we present an LUR for year-2006 ground-level NO(2) concentrations throughout the contiguous United States. Our approach employs ground- and satellite-based NO(2) measurements, and geographic(More)
We use a global 3-D chemical transport model (GEOS-Chem) to interpret new aircraft, surface, and oceanic observations of methanol in terms of the constraints that they place on the atmospheric methanol budget. Recent measurements of methanol concentrations in the ocean mixed layer (OML) imply that in situ biological production must be the main methanol(More)
[1] Aircraft observations of carbon monoxide (CO) from the ICARTT campaign over the eastern United States in summer 2004 (July 1–August 15), interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem), show that the national anthropogenic emission inventory from the U.S. Environmental Protection Agency (93 Tg CO y ) is too high by 60% in(More)
[1] Field measurements of a wide suite of trace gases and aerosols were carried out during April and May 2002, along with extensive chemical transport modeling, as part of the NOAA Intercontinental Transport and Chemical Transformation study. Here, we use a combination of in-situ ground-based measurements from Trinidad Head, CA, chemical transport modeling,(More)
1 University of California at Berkeley, Department of Chemistry, Berkeley, CA, USA 2 University of California at Berkeley, Department of Environmental Science, Policy and Management, Berkeley, CA, USA 3 University of California at Berkeley, Department of Earth and Planetary Sciences, Berkeley, CA, USA * now at: University of East Anglia, School of(More)
[1] We present measurements from three sites during 2001–2002 showing that methylchloroform emissions have continued in the U.S., despite the 1996 production ban under the Montreal Protocol. Available data from urban regions, if representative, suggest that 1997–2002 U.S. emissions declined exponentially from 18.5 to 3.0 Gg/yr. F-11 also showed evidence of(More)
The layout of an urban area can impact air pollution via changes in emissions and their spatial distribution. Here, we explore relationships between air quality and urban form based on cross-sectional observations for 111 U.S. urban areas. We employ stepwise linear regression to quantify how long-term population-weighted outdoor concentrations of ozone,(More)