Learn More
This paper describes BEAM, a general purpose Monte Carlo code to simulate the radiation beams from radiotherapy units including high-energy electron and photon beams, 60Co beams and orthovoltage units. The code handles a variety of elementary geometric entities which the user puts together as needed (jaws, applicators, stacked cones, mirrors, etc.), thus(More)
The Monte Carlo (MC) method has been shown through many research studies to calculate accurate dose distributions for clinical radiotherapy, particularly in heterogeneous patient tissues where the effects of electron transport cannot be accurately handled with conventional, deterministic dose algorithms. Despite its proven accuracy and the potential for(More)
The BEAM code is used to simulate nine photon beams from three major manufacturers of medical linear accelerators (Varian, Elekta, and Siemens), to derive and evaluate estimates for the parameters of the electron beam incident on the target, and to study the effects of some mechanical parameters like target width, primary collimator opening, flattening(More)
PURPOSE To use EGSnrc Monte Carlo simulations to directly calculate beam quality conversion factors,kQ, for 32 cylindrical ionization chambers over a range of beam qualities and to quantify the effect of systematic uncertainties on Monte Carlo calculations of kQ. These factors are required to use the TG-51 or TRS-398 clinical dosimetry protocols for(More)
A recent paper analyzed the sensitivity to various simulation parameters of the Monte Carlo simulations of nine beams from three major manufacturers of commercial medical linear accelerators, ranging in energy from 4-25 MV. In this work the nine models are used: to calculate photon energy spectra and average energy distributions and compare them to those(More)
Heat shock proteins (Hsps) have attracted significant attention as protective antigens against a range of diseases caused by bacterial pathogens. However, more recently there have been suggestions that the protective response is due to the presence of peptide components other than Hsps. We have shown that mice that had been immunized with purified heat(More)
PURPOSE The absorbed-dose energy dependence of GAFCHROMIC EBT and EBT2 film irradiated in photon beams is studied to understand the shape of the curves and the physics behind them. METHODS The absorbed-dose energy dependence is calculated using the EGSnrc-based EGS_chamber and DOSRZnrc codes by calculating the ratio of dose to water to dose to active film(More)
In this study, we have shown that severe combined immunodeficient/beige mice reconstituted with hyperimmune Balb/c lymphocytes can be used as a model to demonstrate adoptive and passive protection against plague infection. Reconstitution of severe combined immunodeficient/beige mice was successful in nine out of ten mice as demonstrated by spleen(More)
The EGS Monte Carlo code was used to generate photon energy deposition kernels which describe the energy deposited by charged particles set in motion by primary, first scattered, second scattered, multiple scattered and bremsstrahlung plus annihilation photons. These were calculated for a water medium irradiated with monoenergetic photons with energies in(More)
The use of Monte Carlo simulations in diagnostic medical imaging research is widespread due to its flexibility and ability to estimate quantities that are challenging to measure empirically. However, any new Monte Carlo simulation code needs to be validated before it can be used reliably. The type and degree of validation required depends on the goals of(More)