Learn More
Anxiety is a core human emotion but can become pathologically dysregulated. We used functional magnetic resonance imaging (fMRI) neurofeedback (NF) to noninvasively alter patterns of brain connectivity, as measured by resting-state fMRI, and to reduce contamination anxiety. Activity of a region of the orbitofrontal cortex associated with contamination(More)
BACKGROUND Functional connectivity analyses of functional magnetic resonance imaging data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to(More)
Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint'(More)
Recent studies have reported that biofeedback of real-time functional magnetic resonance imaging data can enable people to gain control of activity in specific parts of their brain and can alter functional connectivity between brain areas. Here we describe a study using biofeedback of real-time functional magnetic resonance imaging data to train healthy(More)
Age-related variations in resting state connectivity of the human brain were examined from young adulthood through middle age. A voxel-based network measure, degree, was used to assess age-related differences in tissue connectivity throughout the brain. Increases in connectivity with age were found in paralimbic cortical and subcortical regions. Decreases(More)
Resting-state fMRI (rs-fMRI) holds promise as a clinical tool to characterize and monitor the phenotype of different neurological and psychiatric disorders. The most common analysis approach requires the definition of one or more regions-of-interest (ROIs). However this need for a priori ROI information makes rs-fMRI inadequate to survey functional(More)
Neuroimaging is a fast-developing research area in which anatomical and functional images of human brains are collected using techniques such as functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG). Technical advances and large-scale data sets have allowed for the development of models capable of(More)
This review focuses on the use of resting-state functional magnetic resonance imaging data to assess functional connectivity in the human brain and its application in intractable epilepsy. This approach has the potential to predict outcomes for a given surgical procedure based on the pre-surgical functional organization of the brain. Functional connectivity(More)
OBJECTIVE Absence epilepsy is a common seizure disorder in children which can produce chronic psychosocial sequelae. Human patients and rat absence models show bilateral spike-wave discharges (SWD) in cortical regions. We employed diffusion tensor imaging (DTI) in rat absence models to detect abnormalities in white matter pathways connecting regions of(More)
While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic(More)