Dusan Zencak

Learn More
The polycomb transcriptional repressor Bmi1 promotes cell cycle progression, controls cell senescence, and is implicated in brain development. Loss of Bmi1 leads to a decreased brain size and causes progressive ataxia and epilepsy. Recently, Bmi1 was shown to control neural stem cell (NSC) renewal. However, the effect of Bmi1 loss on neural cell fate in(More)
The epigenetic regulator Bmi1 controls proliferation in many organs. Reexpression of cell cycle proteins such as cyclin-dependent kinases (CDKs) is a hallmark of neuronal apoptosis in neurodegenerative diseases. Here we address the potential role of Bmi1 as a key regulator of cell cycle proteins during neuronal apoptosis. We show that several cell cycle(More)
Retinitis pigmentosa (RP) is a heterogeneous group of genetic disorders leading to blindness, which remain untreatable at present. Rd1 mice represent a recognized model of RP, and so far only GDNF treatment provided a slight delay in the retinal degeneration in these mice. Bmi1, a transcriptional repressor, has recently been shown to be essential for neural(More)
  • 1