Durand R. Begault

Learn More
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role. The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information.(More)
A study of sound localization performance was conducted using headphone-delivered virtual speech stimuli, rendered via HRTF-based acoustic auralization software and hardware, and blocked-meatus HRTF measurements. The independent variables were chosen to evaluate commonly held assumptions in the literature regarding improved localization: inclusion of head(More)
The advantage of a head-up auditory display was evaluated in a preliminary experiment designed to measure and compare the acquisition time for capturing visual targets under two auditory conditions: standard one-earpiece presentation and two-earpiece three-dimensional (3D) audio presentation. Twelve commercial airline crews were tested under full mission(More)
Both auditory and non-auditory factors affect the ability for a sound designer to manipulate auditory localization, distance, and environmental context perception. The influence and possible detrimental effects of room acoustics, listening position, and spatial and temporal asynchronies are reviewed. Different approaches to spatial evaluation are reviewed(More)
The natural role of sound in actions involving mechanical impact and vibration suggests the use of auditory display as an augmentation to virtual haptic interfaces. In order to budget available computational resources for sound simulation, the perceptually tolerable asynchrony between paired haptic-auditory sensations must be known. This paper describes a(More)
The advantage of a head-up auditory display for situational awareness was evaluated in an experiment designed to measure and compare the acquisition time for capturing visual targets under two conditions: standard head-down Traffic Alert and Collision Avoidance System display and three-dimensional (3-D) audio Traffic Alert and Collision Avoidance System(More)
An optimal approach to auditory display design for commercial aircraft would utilize both spatialized (3-D) audio techniques and active noise cancellation for safer operations. Results from several aircraft simulator studies conducted at NASA Ames Research Center are reviewed, including Traffic alert and Collision Avoidance System (TCAS) warnings, spoken(More)
A spatial auditory display for multiple speech communications was developed at NASA/Ames Research Center. Input is spatialized by the use of simplified head-related transfer functions, adapted for FIR filtering on Motorola 56001 digital signal processors. Hardware and firmware design implementations are overviewed for the initial prototype developed for(More)
Two experiments are reported that examine the preferred increase in intensity for creating a percept of half auditory distance from a reference. The results of both experiments indicate that the use of an inverse square law (increments of 6 dB) is not the best signal-processing method for this purpose. The application of the results is potentially useful(More)