Dunyaporn Trachootham

Learn More
Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, and recent studies suggest that this biochemical property of cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumours frequently exhibit multiple genetic alterations and high oxidative stress,(More)
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and(More)
Reactive oxygen species (ROS) stimulate cell proliferation and induce genetic instability, and their increase in cancer cells is often viewed as an adverse event. Here, we show that such abnormal increases in ROS can be exploited to selectively kill cancer cells using beta-phenylethyl isothiocyanate (PEITC). Oncogenic transformation of ovarian epithelial(More)
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia, and resistance to fludarabine-based therapies is a major challenge in CLL treatment. Because CLL cells are known to have elevated levels of reactive oxygen species (ROS), we aimed to test a novel ROS-mediated strategy to eliminate fludarabine-resistant CLL cells based on this redox(More)
Increased aerobic glycolysis and oxidative stress are important features of cancer cell metabolism, but the underlying biochemical and molecular mechanisms remain elusive. Using a tetracycline inducible model, we show that activation of K-rasG12V causes mitochondrial dysfunction, leading to decreased respiration, elevated glycolysis, and increased(More)
Tissue stromal cells interact with leukaemia cells and profoundly affect their viability and drug sensitivity. Here we show a biochemical mechanism by which bone marrow stromal cells modulate the redox status of chronic lymphocytic leukaemia (CLL) cells and promote cellular survival and drug resistance. Primary CLL cells from patients exhibit a limited(More)
Mutation of Bcr-Abl is an important mechanism by which chronic myelogenous leukemia (CML) cells become resistant to Gleevec. The T315I mutation is clinically significant since CML cells harboring this mutation are insensitive to Gleevec and other Bcr-Abl-targeted drugs. Identification of new agents capable of effectively killing CML cells with T315I(More)
Mitochondria play essential roles in cellular metabolism, redox homeostasis, and regulation of cell death. Emerging evidences suggest that cancer cells exhibit various degrees of mitochondrial dysfunctions and metabolic alterations, which may serve as a basis to develop therapeutic strategies to preferentially kill the malignant cells. Mitochondria as a(More)
Cancer cells often exhibit increased reactive oxygen species generation and altered redox regulation. The current study was conducted to investigate the biochemical and molecular events associated with redox alterations during chemical-induced malignant transformation and to evaluate their potential roles in radiation sensitivity. Immortalized nonmalignant(More)
Tumor microenvironment plays a major role in cancer development. Understanding how the stroma affects epithelial transformation will provide a basis for new preventive strategies. Recent evidence suggests that oxidative stress in stroma may play a role in cancer progression, and loss of p53 function in the stromal cells was associated with poor prognosis(More)