Duncan R. Stewart

Learn More
Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such(More)
Nanoscale metal/oxide/metal switches have the potential to transform the market for nonvolatile memory and could lead to novel forms of computing. However, progress has been delayed by difficulties in understanding and controlling the coupled electronic and ionic phenomena that dominate the behaviour of nanoscale oxide devices. An analytic theory of the(More)
The authors of the International Technology Roadmap for Semiconductors-the industry consensus set of goals established for advancing silicon integrated circuit technology-have challenged the computing research community to find new physical state variables (other than charge or voltage), new devices, and new architectures that offer memory and logic(More)
Memristive devices are promising components for nanoelectronics with applications in nonvolatile memory and storage, defect-tolerant circuitry, and neuromorphic computing. Bipolar resistive switches based on metal oxides such as TiO2 have been identified as memristive devices primarily based on the “pinched hysteresis loop” that is observed in their(More)
Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are(More)
We present a design study for a nano-scale crossbar memory system that uses memristors with symmetrical but highly nonlinear current-voltage characteristics as memory elements. The memory is non-volatile since the memristors retain their state when un-powered. In order to address the nano-wires that make up this nano-scale crossbar, we use two coded(More)
Memristor crossbars were fabricated at 40 nm half-pitch, using nanoimprint lithography on the same substrate with Si metal-oxide-semiconductor field effect transistor (MOS FET) arrays to form fully integrated hybrid memory resistor (memristor)/transistor circuits. The digitally configured memristor crossbars were used to perform logic functions, to serve as(More)
Ultradense memory and logic circuits fabricated at local densities exceeding 100 × 10(9) cross-points per cm(2) have recently been demonstrated with nanowire crossbar arrays. Practical implementation of such nanocrossbar circuitry, however, requires effective demultiplexing to solve the problem of electrically addressing individual nanowires within an(More)
We present a complete phylogeny of macroperforate planktonic foraminifer species of the Cenozoic Era (∼65 million years ago to present). The phylogeny is developed from a large body of palaeontological work that details the evolutionary relationships and stratigraphic (time) distributions of species-level taxa identified from morphology ('morphospecies').(More)