Duncan J. Watts

Learn More
Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological,(More)
Recent work on the structure of social networks and the internet has focused attention on graphs with distributions of vertex degree that are significantly different from the Poisson degree distributions that have been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary degree distributions. In addition(More)
In this paper we investigate the attributes and relative influence of 1.6M Twitter users by tracking 74 million diffusion events that took place on the Twitter follower graph over a two month interval in 2009. Unsurprisingly, we find that the largest cascades tend to be generated by users who have been influential in the past and who have a large number of(More)
The relationship between financial incentives and performance, long of interest to social scientists, has gained new relevance with the advent of web-based "crowd-sourcing" models of production. Here we investigate the effect of compensation on performance in the context of two experiments, conducted on Amazon's Mechanical Turk (AMT). We find that increased(More)
Hit songs, books, and movies are many times more successful than average, suggesting that "the best" alternatives are qualitatively different from "the rest"; yet experts routinely fail to predict which products will succeed. We investigated this paradox experimentally, by creating an artificial "music market" in which 14,341 participants downloaded(More)
A central idea in marketing and diffusion research is that influentials—a minority of individuals who influence an exceptional number of their peers—are important to the formation of public opinion. Here we examine this idea, which we call the “influentials hypothesis,” using a series of computer simulations of interpersonal influence processes. Under most(More)
The small-world phenomenon formalized in this article as the coincidence of high local clustering and short global separation, is shown to be a general feature of sparse, decentralized networks that are neither completely ordered nor completely random. Networks of this kind have received little attention, yet they appear to be widespread in the social and(More)
We describe some new exactly solvable models of the structure of social networks, based on random graphs with arbitrary degree distributions. We give models both for simple unipartite networks, such as acquaintance networks, and bipartite networks, such as affiliation networks. We compare the predictions of our models to data for a number of real-world(More)