Duncan J. MacGregor

Learn More
Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across(More)
The task of the vasopressin system is homeostasis, a type of process which is fundamental to the brain's regulation of the body, exists in many different systems, and is vital to health and survival. Many illnesses are related to the dysfunction of homeostatic systems, including high blood pressure, obesity and diabetes. Beyond the vasopressin system's own(More)
Vasopressin neurons generate distinctive phasic patterned spike activity in response to elevated extracellular osmotic pressure. These spikes are generated in the cell body and are conducted down the axon to the axonal terminals where they trigger Ca²⁺ entry and subsequent exocytosis of hormone-containing vesicles and secretion of vasopressin. This(More)
  • 1