Learn More
Metaphase chromatids are believed to consist of loops of chromatin anchored to a central scaffold, of which a major component is the decatenatory enzyme DNA topoisomerase II. Silver impregnation selectively stains an axial element of metaphase and anaphase chromatids; but we find that in earlier stages of mitosis, silver staining reveals an initially(More)
The orientation of the mitotic spindle along a polarity axis is critical in asymmetric cell divisions. In the budding yeast, Saccharomyces cerevisiae, loss of the S-phase B-type cyclin Clb5p under conditions of limited cyclin-dependent kinase activity (cdc28-4 clb5Delta cells) causes a spindle positioning defect that results in an undivided nucleus entering(More)
In Saccharomyces cerevisiae, the metaphase-anaphase transition is initiated by the anaphase-promoting complex-dependent degradation of Pds1, whereby Esp1 is activated to promote sister chromatid separation. Although this is a fundamental step in the cell cycle, little is known about the regulation of Esp1 and how loss of cohesion is coordinated with(More)
In Saccharomyces cerevisiae, a single cyclin-dependent kinase, Cdc28, regulates both G1/S and G2/M phase transitions by associating with stage-specific cyclins. During progression through S phase and G2/M, Cdc28 is activated by the B-type cyclins Clb1-6. Because of functional redundancy, specific roles for individual Clbs have been difficult to assign. To(More)
BACKGROUND Proteins containing ubiquitin-like (UBL) and ubiquitin associated (UBA) domains have been suggested to shuttle ubiquitinated substrates to the proteasome for degradation. There are three UBL-UBA containing proteins in budding yeast: Ddi1, Dsk2 and Rad23, which have been demonstrated to play regulatory roles in targeting ubiquitinated substrates(More)
In most eukaryotic cells, DNA replication is confined to S phase of the cell cycle [1]. During this interval, S-phase checkpoint controls restrain mitosis until replication is complete [2]. In budding yeast, the anaphase inhibitor Pds1p has been associated with the checkpoint arrest of mitosis when DNA is damaged or when mitotic spindles have formed(More)
The S-phase checkpoint kinases Mec1 and Rad53 in the budding yeast, Saccharomyces cerevisiae, are activated in response to replication stress that induces replication fork arrest. In the absence of a functional S-phase checkpoint, stalled replication forks collapse and give rise to chromosome breakage. In an attempt to better understand replication dynamics(More)
BACKGROUND The precision of the metaphase-anaphase transition ensures stable genetic inheritance. The spindle checkpoint blocks anaphase onset until the last chromosome biorients at metaphase plate, then the bonds between sister chromatids are removed and disjoined chromatids segregate to the spindle poles. But, how sister separation is triggered is not(More)
BACKGROUND Proper regulation of the cohesion at the centromeres of human chromosomes is essential for accurate genome transmission. Exactly how cohesion is maintained and is then dissolved in anaphase is not understood. PRINCIPAL FINDINGS We have investigated the role of the cohesin complex at centromeres in human cells both by depleting cohesin subunits(More)
During cell division, a mitotic spindle is built by the cell and acts to align and stretch duplicated sister chromosomes before their ultimate segregation into daughter cells. Stretching of the pericentromeric chromatin during metaphase is thought to generate a tension-based signal that promotes proper chromosome segregation. However, it is not known(More)