Duihai Tang

  • Citations Per Year
Learn More
We chose dipicolinic acid as a tridentate chelating unit featuring ONO donors to react with lanthanide(III) ions to yield tight and protective N(3)O(6) environments around the lanthanide(III) ions. We immobilized the lanthanide(III)-dipicolinic acid complexes on colloidal mesoporous silica with diameter smaller than 100 nm by a covalent bond grafting(More)
We have synthesized a series of nanocatalysts with different sizes (50-200 nm) for polymerization of 1,3-butadiene (Bd) by immobilizing salicylaldimine cobalt complexes on the mesoporous silica nanoparticles (MSNs). The prepared catalysts have been characterized by infrared (IR) spectra, thermal gravimetric analyses (TGAs), chemical composition analysis,(More)
Novel hierarchical spinous hollow titania hexagonal prisms are prepared through a facile fluorine-free self-template route using Ti2O3(H2O)2(C2O4)·H2O (TC) hexagonal prisms as a precursor. The hollowing transformation can be elucidated by the template-free Kirkendall effect, and diverse nanostructures can also be synthesized during the conversion process,(More)
A novel design strategy to synthesize highly ordered hexagonally mesostructured metal-organic framework materials was successfully explored, which means the realization of directly cooperative self-assembly of metal ions, bridging ligands and surfactants in an aqueous system.
We have synthesized a series of catalysts for epoxidation of styrene by immobilizing salicylaldimine transition metal (copper, manganese, and cobalt) complexes on mesoporous silica nanoparticles (MSNs) with diameters of 120-150 nm. The prepared catalysts are characterized by infrared (IR) spectra, thermal gravimetric analyses (TGA), inductively coupled(More)
A series of new titanium(IV) complexes with symmetric or asymmetric cis-9,10-dihydrophenanthrenediamide ligands, cis-9,10-PhenH(2)(NR)(2)Ti(O(i)Pr)(2) [PhenH(2) = 9,10-dihydrophenanthrene, R = 2,6-(i)Pr(2)C(6)H(3) (2a), 2,6-Et(2)C(6)H(3) (2b), 2,6-Me(2)C(6)H(3) (2c)], cis-9,10-PhenH(2)(NR(1))(NR(2))Ti(O(i)Pr)(2) [R(1) = 2,6-(i)Pr(2)C(6)H(3), R(2) =(More)
  • 1