Duccio Fanelli

Learn More
In this paper, we show that the small world and weak ties phenomena can spontaneously emerge in a social network of interacting agents. This dynamics is simulated in the framework of a simplified model of opinion diffusion in an evolving social network where agents are made to interact, possibly update their beliefs and modify the social relationships(More)
In structural studies of proteins, the first task is to identify the different parts of the protein. We present a robust method using a fuzzy framework for delineating a protein and to identify its parts. The method is used in a study of the immunoglobulin G antibody, individually imaged using cryo electron tomography, with satisfactory results.
Systems with long-range interactions display a short-time relaxation towards quasistationary states whose lifetime increases with system size. With reference to the Hamiltonian mean field model, we here show that a maximum entropy principle, based on Lynden-Bell's pioneering idea of "violent relaxation," predicts the presence of out-of-equilibrium phase(More)
We propose an approach, based on statistical mechanics, to predict the saturated state of a single-pass, high-gain free-electron laser. In analogy with the violent relaxation process in self-gravitating systems and in the Euler equation of two-dimensional turbulence, the initial relaxation of the laser can be described by the statistical mechanics of an(More)
In this paper we consider the problem of optimal search strategies on multi-linked networks, i.e. graphs whose nodes are endowed with several independent sets of links. We focus preliminarily on agents randomly hopping along the links of a graph, with the additional possibility of performing non-local hops to randomly chosen nodes with a given probability.(More)
We propose a simple dynamical system to interpret the gait time series from patients affected by three neurodegenerative diseases: Parkinson, Huntington and Amyotrophic Lateral Sclerosis. The model is shown to reproduce the main aspects of the experimental time series. Within this scenario, quantitative differences in specific indicators are detected thus(More)
A stochastic model of intracellular calcium oscillations is analytically studied. The governing master equation is expanded under the linear noise approximation and a closed prediction for the power spectrum of fluctuations analytically derived. A peak in the obtained power spectrum profile signals the presence of stochastic, noise induced oscillations(More)
A stochastic model is here introduced to investigate the molecular mechanisms which trigger the perception of pain. The action of analgesic drug compounds is discussed in a dynamical context, where the competition with inactive species is explicitly accounted for. Finite size effects inevitably perturb the mean-field dynamics: Oscillations in the amount of(More)
A model is proposed to study the process of hypoxia-induced angiogenesis in cancer cells. The model accounts for the role played by the vascular endothelial growth factor (VEGF)-A in regulating the oxygen intake. VEGF-A is dynamically controlled by the HIF-1α concentration. If not degraded, HIF-1α can bind to the subunit termed HIF-1β and so experience(More)
Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles — membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for pre-biotic reactions to occur. In this paper, we(More)