Duc Thanh Nguyen

Learn More
Local Binary Pattern (LBP) as a descriptor, has been successfully used in various object recognition tasks because of its discriminative property and computational simplicity. In this paper a variant of the LBP referred to as Non-Redundant Local Binary Pattern (NRLBP) is introduced and its application for object detection is demonstrated. Compared with the(More)
In this paper, we propose a hybrid algorithm that combines genetic and heuristic approach. By using this method, solving timetabling problem is converted to finding the optimal arrangement of elements on a 2D matrix. This algorithm was implemented and tested with the synthetic and real data of Nong lam University of HCM City, Vietnam. The experimental(More)
Several RGB-D datasets have been publicized over the past few years for facilitating research in computer vision and robotics. However, the lack of comprehensive and fine-grained annotation in these RGB-D datasets has posed challenges to their widespread usage. In this paper, we introduce SceneNN, an RGB-D scene dataset consisting of 100 scenes. All scenes(More)
This paper presents a novel and low complexity method for real-time video-based smoke detection. As a local texture operator, Non-Redundant Local Binary Pattern (NRLBP) is more discriminative and robust to illumination changes in comparison with original Local Binary Pattern (LBP), thus is employed to encode the appearance information of smoke.(More)
This paper presents an improved template matching method that combines both spatial and orientation information in a simple and effective way. The spatial information is obtained through a generalized distance transform (GDT) that weights the distance transform more on the strong edge pixels and the orientation information is represented as an orientation(More)
This paper proposes a novel mean field-based Chamfer template matching method. In our method, each template is represented as a field model and matching a template with an input image is formulated as estimation of a maximum of posteriori in the field model. Variational approach is then adopted to approximate the estimation. The proposed method was applied(More)
This paper presents a method for extracting discriminative key poses for skeleton-based action recognition. Poses are represented by normalized joint locations, velocities and accelerations of skeleton joints. An extended label consistent K-SVD (ELC-KSVD) algorithm is proposed for learning the common and action-specific dictionaries. Discriminative key(More)
This paper proposes food image classification methods exploiting both local appearance and global structural information of food objects. The contribution of the paper is threefold. First, non-redundant local binary pattern (NRLBP) is used to describe the local appearance information of food objects. Second, the structural information of food objects is(More)