Duane L. Pierson

Learn More
Microbial adaptation to environmental stimuli is essential for survival. While several of these stimuli have been studied in detail, recent studies have demonstrated an important role for a novel environmental parameter in which microgravity and the low fluid shear dynamics associated with microgravity globally regulate microbial gene expression,(More)
A comprehensive analysis of both the molecular genetic and phenotypic responses of any organism to the space flight environment has never been accomplished because of significant technological and logistical hurdles. Moreover, the effects of space flight on microbial pathogenicity and associated infectious disease risks have not been studied. The bacterial(More)
The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight(More)
INTRODUCTION Immune system dysregulation has been demonstrated to occur during and immediately following spaceflight. If found to persist during lengthy flights, this phenomenon could be a serious health risk to crewmembers participating in lunar or Mars missions. METHODS A comprehensive postflight immune assessment was performed on 17 short-duration(More)
Pretyrosine, an intermediate of L-tyrosine biosynthesis in blue-green algae, was found to be enzymatically formed and utilized in Pseudomonas aeruginosa. The enzymology and regulation of aromatic biosynthesis were re-evaluated in the context of these new findings, Four species of aromatic aminotranaferase were separated and partially purified. Each was(More)
We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes(More)
The low-shear environment of optimized rotation suspension culture allows both eukaryotic and prokaryotic cells to assume physiologically relevant phenotypes that have led to significant advances in fundamental investigations of medical and biological importance. This culture environment has also been used to model microgravity for ground-based studies(More)
Maintaining vitamin D status without sunlight exposure is difficult without supplementation. This study was designed to better understand interrelationships between periodic vitamin D supplementation and immune function in Antarctic workers. The effect of 2 oral dosing regimens of vitamin D supplementation on vitamin D status and markers of immune function(More)
Rotating bioreactors designed at NASA’s Johnson Space Center were used to simulate a microgravity environment in which to study secondary metabolism. The system examined was β-lactam antibiotic production by Streptomyces clavuligerus. Both growth and β-lactam production occurred in simulated microgravity. Stimulatory effects of phosphate and L-lysine,(More)
Human trophoblast research relies on a combination of in vitro models, including isolated primary cultures, explant cultures, and trophoblast cell lines. In the present study, we have utilized the rotating wall vessel (RWV) bioreactor to generate a three-dimensional (3-D) model of human placentation for the study of cytotrophoblast (CTB) invasion. The RWV(More)