Learn More
ALS is a fatal paralytic disorder characterized by a progressive loss of spinal cord motor neurons. Herein, we show that NADPH oxidase, the main reactive oxygen species-producing enzyme during inflammation, is activated in spinal cords of ALS patients and in spinal cords in a genetic animal model of this disease. We demonstrate that inactivation of NADPH(More)
Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by the loss of the nigrostriatal dopaminergic neurons, which can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Increased expression of cyclooxygenase type 2 (COX-2) and production of prostaglandin E(2) have been implicated in(More)
Altered degradation of alpha-synuclein (alpha-syn) has been implicated in the pathogenesis of Parkinson disease (PD). We have shown that alpha-syn can be degraded via chaperone-mediated autophagy (CMA), a selective lysosomal mechanism for degradation of cytosolic proteins. Pathogenic mutants of alpha-syn block lysosomal translocation, impairing their own(More)
Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by a loss of substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons, and can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Both inflammatory processes and oxidative stress may contribute to MPTP- and PD-related(More)
Parkinson disease (PD) is a neurodegenerative disorder characterized by a loss of the nigrostriatal dopaminergic neurons accompanied by a deficit in mitochondrial respiration. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that causes dopaminergic neurodegeneration and a mitochondrial deficit reminiscent of PD. Here we show that the(More)
Parkinson's disease (PD) is characterized by a loss of ventral midbrain dopaminergic neurons, which can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Inflammatory oxidants have emerged as key contributors to PD- and MPTP-related neurodegeneration. Here, we show that myeloperoxidase (MPO), a key oxidant-producing enzyme(More)
It has been proposed that mitogen-activated protein kinase (MAPK) pathways may play a role in the regulation of pro-inflammatory cytokines, such as interlukine-1, during cerebral ischemia. Our previous study showed that extracellular-signal-regulated kinases 1 and 2 (ERK 1/2) were activated during focal cerebral ischemia in mice [J. Cereb. Blood Flow Metab.(More)
Impaired proteasome function is a potential mechanism for dopaminergic neuron degeneration. To model this molecular defect, we administered systemically the reversible lipophilic proteasome inhibitor, carbobenzoxy-L-isoleucyl-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal (PSI), to rodents. In contrast to a previous report, this approach failed to cause any(More)
Our previous study demonstrated that the inhibition of interleukin-1beta (IL-1beta) reduces ischemic brain injury; however, the molecular mechanism of the action of IL-1 in cerebral ischemia is unclear. We are investigating currently the role of NFkappaB during focal cerebral ischemia, using mutant mice deficient in the interleukin-1 converting enzyme gene(More)
Our previous study demonstrated that the inhibition of interleukin-1␤ (IL-1␤) reduces ischemic brain injury; however , the molecular mechanism of the action of IL-1 in cerebral ischemia is unclear. We are investigating currently the role of NF␬B during focal cerebral ischemia, using mutant mice deficient in the interleukin-1 converting enzyme gene (ICE KO)(More)
  • 1