Duílio Mazzoni Zerbinato de Andrade Silva

Learn More
Supernumerary (B) chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH) is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the(More)
Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are(More)
The genus Astyanax is a specious Neotropical fish group, occurring from the south area of the United States to Argentina. During the past few years, intensive studies on representatives of this group have been performed, broadening the genetic, taxonomic and biogeographical knowledge considerably. However, phylogenetic relationships among many species(More)
B chromosomes constitute a heterogeneous mixture of genomic parasites that are sometimes derived intraspecifically from the standard genome of the host species, but result from interspecific hybridization in other cases. The mode of origin determines the DNA content, with the B chromosomes showing high similarity with the A genome in the first case, but(More)
Eukaryote genomes are frequently burdened with the presence of supernumerary (B) chromosomes. Their origin is frequently investigated by chromosome painting, under the hypothesis that sharing the repetitive DNA sequences contained in the painting probes is a sign of common descent. However, the intragenomic mobility of many anonymous DNA sequences contained(More)
Repetitive DNA sequences constitute a great portion of the genome of eukaryotes and are considered key components to comprehend evolutionary mechanisms and karyotypic differentiation. Aiming to contribute to the knowledge of chromosome structure and organization of some repetitive DNA classes in the fish genome, chromosomes of two allopatric populations of(More)
The high-throughput analysis of satellite DNA (satDNA) content, by means of Illumina sequencing, unveiled 45 satDNA families in the genome of Astyanax paranae, with repeat unit length (RUL) ranging from 6 to 365 bp and marked predominance of short satellites (median length = 59 bp). The analysis of chromosomal location of 35 satDNAs in A. paranae, A.(More)
Satellite DNA (satDNA) is an abundant fraction of repetitive DNA in eukaryotic genomes and plays an important role in genome organization and evolution. In general, satDNA sequences follow a concerted evolutionary pattern through the intragenomic homogenization of different repeat units. In addition, the satDNA library hypothesis predicts that related(More)
An important feature of eukaryotic organisms is the number of different repetitive DNA sequences in their genome, a feature not observed in prokaryotes. These sequences are considered to be important components for understanding evolutionary mechanisms and the karyotypic differentiation processes. Thus, we aimed to physically map the histone genes and(More)
We used conventional cytogenetic techniques (Giemsa, C-banding, Ag-NOR), and fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes to investigate the karyotype and cytogenetic characteristics of Ichthyoelephas humeralis (Günther, 1860) from Ecuador. The specimens studied have a karyotype with 2n=54 biarmed chromosomes (32 M + 22 SM) and(More)
  • 1